ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.08573
  4. Cited By
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift

Neural Ensemble Search for Uncertainty Estimation and Dataset Shift

15 June 2020
Sheheryar Zaidi
Arber Zela
T. Elsken
Chris Holmes
Frank Hutter
Yee Whye Teh
    OOD
    UQCV
ArXivPDFHTML

Papers citing "Neural Ensemble Search for Uncertainty Estimation and Dataset Shift"

49 / 49 papers shown
Title
HopCast: Calibration of Autoregressive Dynamics Models
HopCast: Calibration of Autoregressive Dynamics Models
Muhammad Bilal Shahid
Cody H. Fleming
UQCV
40
0
0
27 Jan 2025
Dipper: Diversity in Prompts for Producing Large Language Model
  Ensembles in Reasoning tasks
Dipper: Diversity in Prompts for Producing Large Language Model Ensembles in Reasoning tasks
Gregory Kang Ruey Lau
Wenyang Hu
Diwen Liu
Jizhuo Chen
S. Ng
Bryan Kian Hsiang Low
LRM
AI4CE
76
7
0
12 Dec 2024
Dynamic Post-Hoc Neural Ensemblers
Dynamic Post-Hoc Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
36
0
0
06 Oct 2024
Scalable Ensemble Diversification for OOD Generalization and Detection
Scalable Ensemble Diversification for OOD Generalization and Detection
Alexander Rubinstein
Luca Scimeca
Damien Teney
Seong Joon Oh
BDL
OOD
355
1
0
25 Sep 2024
Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble
Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble
Chenhui Xu
Fuxun Yu
Zirui Xu
Nathan Inkawhich
Xiang Chen
OODD
30
5
0
24 Mar 2024
Graph Neural Machine: A New Model for Learning with Tabular Data
Graph Neural Machine: A New Model for Learning with Tabular Data
Giannis Nikolentzos
Siyun Wang
J. Lutzeyer
Michalis Vazirgiannis
29
0
0
05 Feb 2024
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate
  Reward Hacking
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking
Jacob Eisenstein
Chirag Nagpal
Alekh Agarwal
Ahmad Beirami
Alex DÁmour
...
Katherine Heller
Stephen R. Pfohl
Deepak Ramachandran
Peter Shaw
Jonathan Berant
24
82
0
14 Dec 2023
Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields
Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields
Lily Goli
Cody Reading
Silvia Sellán
Alec Jacobson
Andrea Tagliasacchi
BDL
UQCV
23
59
0
06 Sep 2023
Fisher-Weighted Merge of Contrastive Learning Models in Sequential
  Recommendation
Fisher-Weighted Merge of Contrastive Learning Models in Sequential Recommendation
Jung Hyun Ryu
Jaeheyoung Jeon
Jewoong Cho
Myung-joo Kang
MoMe
11
1
0
05 Jul 2023
Calibrating Multimodal Learning
Calibrating Multimodal Learning
Huanrong Zhang
Changqing Zhang
Bing Wu
H. Fu
Joey Tianyi Zhou
Q. Hu
59
16
0
02 Jun 2023
Deep Anti-Regularized Ensembles provide reliable out-of-distribution
  uncertainty quantification
Deep Anti-Regularized Ensembles provide reliable out-of-distribution uncertainty quantification
Antoine de Mathelin
Francois Deheeger
Mathilde Mougeot
Nicolas Vayatis
OOD
UQCV
14
2
0
08 Apr 2023
Source-free Domain Adaptation Requires Penalized Diversity
Source-free Domain Adaptation Requires Penalized Diversity
Laya Rafiee Sevyeri
Ivaxi Sheth
Farhood Farahnak
Alexandre See
Samira Ebrahimi Kahou
T. Fevens
Mohammad Havaei
TTA
24
0
0
06 Apr 2023
A Survey of Historical Learning: Learning Models with Learning History
A Survey of Historical Learning: Learning Models with Learning History
Xiang Li
Ge Wu
Lingfeng Yang
Wenzhe Wang
Renjie Song
Jian Yang
MU
AI4TS
23
2
0
23 Mar 2023
EPiC: Ensemble of Partial Point Clouds for Robust Classification
EPiC: Ensemble of Partial Point Clouds for Robust Classification
Meir Yossef Levi
Guy Gilboa
3DPC
15
10
0
20 Mar 2023
Bayesian Quadrature for Neural Ensemble Search
Bayesian Quadrature for Neural Ensemble Search
Saad Hamid
Xingchen Wan
Martin Jørgensen
Binxin Ru
Michael A. Osborne
BDL
UQCV
28
1
0
15 Mar 2023
Deep incremental learning models for financial temporal tabular datasets
  with distribution shifts
Deep incremental learning models for financial temporal tabular datasets with distribution shifts
Thomas Wong
Mauricio Barahona
OOD
AIFin
AI4TS
18
0
0
14 Mar 2023
Uncertainty Estimation by Fisher Information-based Evidential Deep
  Learning
Uncertainty Estimation by Fisher Information-based Evidential Deep Learning
Danruo Deng
Guangyong Chen
Yang Yu
Fu-Lun Liu
Pheng-Ann Heng
EDL
UQCV
FedML
27
40
0
03 Mar 2023
FAIR-Ensemble: When Fairness Naturally Emerges From Deep Ensembling
FAIR-Ensemble: When Fairness Naturally Emerges From Deep Ensembling
Wei-Yin Ko
Daniel D'souza
Karina Nguyen
Randall Balestriero
Sara Hooker
FedML
19
11
0
01 Mar 2023
A Survey on Uncertainty Quantification Methods for Deep Learning
A Survey on Uncertainty Quantification Methods for Deep Learning
Wenchong He
Zhe Jiang
Tingsong Xiao
Zelin Xu
Yukun Li
BDL
UQCV
AI4CE
19
18
0
26 Feb 2023
How Reliable is Your Regression Model's Uncertainty Under Real-World
  Distribution Shifts?
How Reliable is Your Regression Model's Uncertainty Under Real-World Distribution Shifts?
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
42
12
0
07 Feb 2023
DivBO: Diversity-aware CASH for Ensemble Learning
DivBO: Diversity-aware CASH for Ensemble Learning
Yu Shen
Yupeng Lu
Yang Li
Yaofeng Tu
Wentao Zhang
Bin Cui
17
6
0
07 Feb 2023
Neural Architecture Search: Insights from 1000 Papers
Neural Architecture Search: Insights from 1000 Papers
Colin White
Mahmoud Safari
R. Sukthanker
Binxin Ru
T. Elsken
Arber Zela
Debadeepta Dey
Frank Hutter
3DV
AI4CE
34
130
0
20 Jan 2023
Bayesian posterior approximation with stochastic ensembles
Bayesian posterior approximation with stochastic ensembles
Oleksandr Balabanov
Bernhard Mehlig
H. Linander
BDL
UQCV
27
5
0
15 Dec 2022
Pixel is All You Need: Adversarial Trajectory-Ensemble Active Learning
  for Salient Object Detection
Pixel is All You Need: Adversarial Trajectory-Ensemble Active Learning for Salient Object Detection
Zhenyu Wu
Lin Wang
Wen Wang
Qing Xia
Chenglizhao Chen
Aimin Hao
Shuo Li
AAML
36
5
0
13 Dec 2022
Automatic Neural Network Hyperparameter Optimization for Extrapolation:
  Lessons Learned from Visible and Near-Infrared Spectroscopy of Mango Fruit
Automatic Neural Network Hyperparameter Optimization for Extrapolation: Lessons Learned from Visible and Near-Infrared Spectroscopy of Mango Fruit
Matthew C. Dirks
David Poole
18
16
0
03 Oct 2022
TabPFN: A Transformer That Solves Small Tabular Classification Problems
  in a Second
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second
Noah Hollmann
Samuel G. Müller
Katharina Eggensperger
Frank Hutter
32
260
0
05 Jul 2022
Improving Ensemble Distillation With Weight Averaging and Diversifying
  Perturbation
Improving Ensemble Distillation With Weight Averaging and Diversifying Perturbation
G. Nam
Hyungi Lee
Byeongho Heo
Juho Lee
UQCV
FedML
18
7
0
30 Jun 2022
Multi-Objective Hyperparameter Optimization in Machine Learning -- An
  Overview
Multi-Objective Hyperparameter Optimization in Machine Learning -- An Overview
Florian Karl
Tobias Pielok
Julia Moosbauer
Florian Pfisterer
Stefan Coors
...
Jakob Richter
Michel Lang
Eduardo C. Garrido-Merchán
Juergen Branke
B. Bischl
AI4CE
26
56
0
15 Jun 2022
Revisiting the Importance of Amplifying Bias for Debiasing
Revisiting the Importance of Amplifying Bias for Debiasing
Jungsoo Lee
Jeonghoon Park
Daeyoung Kim
Juyoung Lee
E. Choi
Jaegul Choo
37
21
0
29 May 2022
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Martin Ferianc
Miguel R. D. Rodrigues
UQCV
37
0
0
19 May 2022
A Taxonomy of Error Sources in HPC I/O Machine Learning Models
A Taxonomy of Error Sources in HPC I/O Machine Learning Models
Mihailo Isakov
Mikaela Currier
Eliakin Del Rosario
Sandeep Madireddy
Prasanna Balaprakash
P. Carns
R. Ross
Glenn K. Lockwood
Michel A. Kinsy
22
1
0
18 Apr 2022
Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph
  Neural Networks for Traffic Forecasting
Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph Neural Networks for Traffic Forecasting
Tanwi Mallick
Prasanna Balaprakash
Jane Macfarlane
BDL
25
11
0
04 Apr 2022
Towards Less Constrained Macro-Neural Architecture Search
Towards Less Constrained Macro-Neural Architecture Search
Vasco Lopes
L. A. Alexandre
28
5
0
10 Mar 2022
Evolutionary Neural Cascade Search across Supernetworks
Evolutionary Neural Cascade Search across Supernetworks
A. Chebykin
T. Alderliesten
Peter A. N. Bosman
13
1
0
08 Mar 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural
  Representations for Computed Tomography
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDL
OOD
UQCV
26
12
0
22 Feb 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
36
59
0
14 Feb 2022
Transformers Can Do Bayesian Inference
Transformers Can Do Bayesian Inference
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
BDL
UQCV
19
139
0
20 Dec 2021
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
Romain Egele
R. Maulik
Krishnan Raghavan
Bethany Lusch
Isabelle M Guyon
Prasanna Balaprakash
UQCV
OOD
BDL
20
45
0
26 Oct 2021
No One Representation to Rule Them All: Overlapping Features of Training
  Methods
No One Representation to Rule Them All: Overlapping Features of Training Methods
Raphael Gontijo-Lopes
Yann N. Dauphin
E. D. Cubuk
18
60
0
20 Oct 2021
Combining Different V1 Brain Model Variants to Improve Robustness to
  Image Corruptions in CNNs
Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs
A. Baidya
Joel Dapello
J. DiCarlo
Tiago Marques
AAML
25
6
0
20 Oct 2021
Unsolved Problems in ML Safety
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
186
273
0
28 Sep 2021
Neural Ensemble Search via Bayesian Sampling
Neural Ensemble Search via Bayesian Sampling
Yao Shu
Yizhou Chen
Zhongxiang Dai
Bryan Kian Hsiang Low
BDL
13
8
0
06 Sep 2021
Well-tuned Simple Nets Excel on Tabular Datasets
Well-tuned Simple Nets Excel on Tabular Datasets
Arlind Kadra
Marius Lindauer
Frank Hutter
Josif Grabocka
15
185
0
21 Jun 2021
LENAS: Learning-based Neural Architecture Search and Ensemble for 3D
  Radiotherapy Dose Prediction
LENAS: Learning-based Neural Architecture Search and Ensemble for 3D Radiotherapy Dose Prediction
Yi Lin
Yanfei Liu
Hao-tao Chen
Xin Yang
Kai Ma
Yefeng Zheng
Kwang-Ting Cheng
3DV
26
4
0
12 Jun 2021
Greedy Bayesian Posterior Approximation with Deep Ensembles
Greedy Bayesian Posterior Approximation with Deep Ensembles
A. Tiulpin
Matthew B. Blaschko
UQCV
FedML
31
4
0
29 May 2021
NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural
  Architecture Search
NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural Architecture Search
Arber Zela
Julien N. Siems
Frank Hutter
82
147
0
28 Jan 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
264
5,326
0
05 Nov 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1