Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.08403
Cited By
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
15 June 2020
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them"
18 / 18 papers shown
Title
Uniformly Stable Algorithms for Adversarial Training and Beyond
Jiancong Xiao
Jiawei Zhang
Zhimin Luo
Asuman Ozdaglar
AAML
48
0
0
03 May 2024
Effective Gradient Sample Size via Variation Estimation for Accelerating Sharpness aware Minimization
Jiaxin Deng
Junbiao Pang
Baochang Zhang
Tian Wang
48
1
0
24 Feb 2024
Momentum-SAM: Sharpness Aware Minimization without Computational Overhead
Marlon Becker
Frederick Altrock
Benjamin Risse
79
5
0
22 Jan 2024
Stability Analysis and Generalization Bounds of Adversarial Training
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Jue Wang
Zhimin Luo
AAML
32
30
0
03 Oct 2022
Adaptive Smoothness-weighted Adversarial Training for Multiple Perturbations with Its Stability Analysis
Jiancong Xiao
Zeyu Qin
Yanbo Fan
Baoyuan Wu
Jue Wang
Zhimin Luo
AAML
31
7
0
02 Oct 2022
MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP Initialization
Xiaotian Han
Tong Zhao
Yozen Liu
Xia Hu
Neil Shah
GNN
55
36
0
30 Sep 2022
Boosting Factorization Machines via Saliency-Guided Mixup
Chenwang Wu
Defu Lian
Yong Ge
Min Zhou
Enhong Chen
Dacheng Tao
13
4
0
17 Jun 2022
How Does Frequency Bias Affect the Robustness of Neural Image Classifiers against Common Corruption and Adversarial Perturbations?
Alvin Chan
Yew-Soon Ong
Clement Tan
AAML
24
13
0
09 May 2022
Defending Black-box Skeleton-based Human Activity Classifiers
He-Nan Wang
Yunfeng Diao
Zichang Tan
G. Guo
AAML
51
10
0
09 Mar 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu
Ziqi Zhao
Sabine Süsstrunk
Mathieu Salzmann
TPM
AAML
MQ
29
4
0
03 Feb 2022
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
194
345
0
15 Dec 2021
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
23
13
0
14 Dec 2021
Location Leakage in Federated Signal Maps
Evita Bakopoulou
Justin Ley
Jiang Zhang
Konstantinos Psounis
A. Markopoulou
FedML
20
5
0
07 Dec 2021
Sharpness-aware Quantization for Deep Neural Networks
Jing Liu
Jianfei Cai
Bohan Zhuang
MQ
27
24
0
24 Nov 2021
On the Noise Stability and Robustness of Adversarially Trained Networks on NVM Crossbars
Chun Tao
Deboleena Roy
I. Chakraborty
Kaushik Roy
AAML
26
2
0
19 Sep 2021
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic Regression
Masanori Yamada
Sekitoshi Kanai
Tomoharu Iwata
Tomokatsu Takahashi
Yuki Yamanaka
Hiroshi Takahashi
Atsutoshi Kumagai
AAML
16
9
0
05 Feb 2021
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
1