ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.00102
50
36

MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP Initialization

30 September 2022
Xiaotian Han
Tong Zhao
Yozen Liu
Xia Hu
Neil Shah
    GNN
ArXivPDFHTML
Abstract

Training graph neural networks (GNNs) on large graphs is complex and extremely time consuming. This is attributed to overheads caused by sparse matrix multiplication, which are sidestepped when training multi-layer perceptrons (MLPs) with only node features. MLPs, by ignoring graph context, are simple and faster for graph data, however they usually sacrifice prediction accuracy, limiting their applications for graph data. We observe that for most message passing-based GNNs, we can trivially derive an analog MLP (we call this a PeerMLP) with an equivalent weight space, by setting the trainable parameters with the same shapes, making us curious about \textbf{\emph{how do GNNs using weights from a fully trained PeerMLP perform?}} Surprisingly, we find that GNNs initialized with such weights significantly outperform their PeerMLPs, motivating us to use PeerMLP training as a precursor, initialization step to GNN training. To this end, we propose an embarrassingly simple, yet hugely effective initialization method for GNN training acceleration, called MLPInit. Our extensive experiments on multiple large-scale graph datasets with diverse GNN architectures validate that MLPInit can accelerate the training of GNNs (up to 33X speedup on OGB-Products) and often improve prediction performance (e.g., up to 7.97%7.97\%7.97% improvement for GraphSAGE across 777 datasets for node classification, and up to 17.81%17.81\%17.81% improvement across 444 datasets for link prediction on metric Hits@10). The code is available at \href{https://github.com/snap-research/MLPInit-for-GNNs}.

View on arXiv
Comments on this paper