ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.05256
  4. Cited By
Recurrent Flow Networks: A Recurrent Latent Variable Model for Density
  Modelling of Urban Mobility
v1v2 (latest)

Recurrent Flow Networks: A Recurrent Latent Variable Model for Density Modelling of Urban Mobility

9 June 2020
Daniele Gammelli
Filipe Rodrigues
ArXiv (abs)PDFHTML

Papers citing "Recurrent Flow Networks: A Recurrent Latent Variable Model for Density Modelling of Urban Mobility"

12 / 12 papers shown
Title
DeepSTCL: A Deep Spatio-temporal ConvLSTM for Travel Demand Prediction
DeepSTCL: A Deep Spatio-temporal ConvLSTM for Travel Demand Prediction
Dongjie Wang
Yan Yang
Shangming Ning
AI4TSHAI
49
67
0
22 Aug 2020
Multivariate Probabilistic Time Series Forecasting via Conditioned
  Normalizing Flows
Multivariate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows
Kashif Rasul
Abdul-Saboor Sheikh
Ingmar Schuster
Urs M. Bergmann
Roland Vollgraf
BDLAI4TSAI4CE
104
187
0
14 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
209
1,713
0
05 Dec 2019
Learning Likelihoods with Conditional Normalizing Flows
Learning Likelihoods with Conditional Normalizing Flows
Christina Winkler
Daniel E. Worrall
Emiel Hoogeboom
Max Welling
TPM
223
226
0
29 Nov 2019
Multi-output Bus Travel Time Prediction with Convolutional LSTM Neural
  Network
Multi-output Bus Travel Time Prediction with Convolutional LSTM Neural Network
N. Petersen
Filipe Rodrigues
Francisco Câmara Pereira
AI4TS
45
224
0
07 Mar 2019
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDLGP
158
1,057
0
18 Oct 2018
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
275
78
0
26 May 2016
Sequential Neural Models with Stochastic Layers
Sequential Neural Models with Stochastic Layers
Marco Fraccaro
Søren Kaae Sønderby
Ulrich Paquet
Ole Winther
BDL
117
398
0
24 May 2016
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
568
8,005
0
13 Jun 2015
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
  Modeling
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
Junyoung Chung
Çağlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
601
12,741
0
11 Dec 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Generating Sequences With Recurrent Neural Networks
Generating Sequences With Recurrent Neural Networks
Alex Graves
GAN
162
4,039
0
04 Aug 2013
1