ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.05205
  4. Cited By
On the Bottleneck of Graph Neural Networks and its Practical
  Implications

On the Bottleneck of Graph Neural Networks and its Practical Implications

9 June 2020
Uri Alon
Eran Yahav
    GNN
ArXivPDFHTML

Papers citing "On the Bottleneck of Graph Neural Networks and its Practical Implications"

50 / 403 papers shown
Title
On Representation Knowledge Distillation for Graph Neural Networks
On Representation Knowledge Distillation for Graph Neural Networks
Chaitanya K. Joshi
Fayao Liu
Xu Xun
Jie Lin
Chuan-Sheng Foo
27
54
0
09 Nov 2021
Cold Brew: Distilling Graph Node Representations with Incomplete or
  Missing Neighborhoods
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Wenqing Zheng
Edward W. Huang
Nikhil S. Rao
S. Katariya
Zhangyang Wang
Karthik Subbian
32
62
0
08 Nov 2021
Directional Message Passing on Molecular Graphs via Synthetic
  Coordinates
Directional Message Passing on Molecular Graphs via Synthetic Coordinates
Johannes Klicpera
Chandan Yeshwanth
Stephan Günnemann
42
35
0
08 Nov 2021
GraphSearchNet: Enhancing GNNs via Capturing Global Dependencies for
  Semantic Code Search
GraphSearchNet: Enhancing GNNs via Capturing Global Dependencies for Semantic Code Search
Shangqing Liu
Xiaofei Xie
J. Siow
L. Ma
Guozhu Meng
Yang Liu
GNN
23
53
0
04 Nov 2021
Delayed Propagation Transformer: A Universal Computation Engine towards
  Practical Control in Cyber-Physical Systems
Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems
Wenqing Zheng
Qiangqiang Guo
H. Yang
Peihao Wang
Zhangyang Wang
AI4CE
11
12
0
29 Oct 2021
On Provable Benefits of Depth in Training Graph Convolutional Networks
On Provable Benefits of Depth in Training Graph Convolutional Networks
Weilin Cong
M. Ramezani
M. Mahdavi
27
73
0
28 Oct 2021
Does your graph need a confidence boost? Convergent boosted smoothing on
  graphs with tabular node features
Does your graph need a confidence boost? Convergent boosted smoothing on graphs with tabular node features
Jiuhai Chen
Jonas W. Mueller
V. Ioannidis
Soji Adeshina
Yangkun Wang
Tom Goldstein
David Wipf
35
12
0
26 Oct 2021
Parameter Prediction for Unseen Deep Architectures
Parameter Prediction for Unseen Deep Architectures
Boris Knyazev
M. Drozdzal
Graham W. Taylor
Adriana Romero Soriano
OOD
29
79
0
25 Oct 2021
Gophormer: Ego-Graph Transformer for Node Classification
Gophormer: Ego-Graph Transformer for Node Classification
Jianan Zhao
Chaozhuo Li
Qian Wen
Yiqi Wang
Yuming Liu
Hao Sun
Xing Xie
Yanfang Ye
24
76
0
25 Oct 2021
FDGATII : Fast Dynamic Graph Attention with Initial Residual and
  Identity Mapping
FDGATII : Fast Dynamic Graph Attention with Initial Residual and Identity Mapping
Gayan K. Kulatilleke
Marius Portmann
Ryan K. L. Ko
Shekhar S. Chandra
22
9
0
21 Oct 2021
Beltrami Flow and Neural Diffusion on Graphs
Beltrami Flow and Neural Diffusion on Graphs
B. Chamberlain
J. Rowbottom
D. Eynard
Francesco Di Giovanni
Xiaowen Dong
M. Bronstein
AI4CE
34
79
0
18 Oct 2021
ifMixup: Interpolating Graph Pair to Regularize Graph Classification
ifMixup: Interpolating Graph Pair to Regularize Graph Classification
Hongyu Guo
Yongyi Mao
32
9
0
18 Oct 2021
Graph Neural Networks with Learnable Structural and Positional
  Representations
Graph Neural Networks with Learnable Structural and Positional Representations
Vijay Prakash Dwivedi
A. Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
GNN
197
309
0
15 Oct 2021
Power to the Relational Inductive Bias: Graph Neural Networks in
  Electrical Power Grids
Power to the Relational Inductive Bias: Graph Neural Networks in Electrical Power Grids
Martin Ringsquandl
Houssem Sellami
Marcel Hildebrandt
Dagmar Beyer
S. Henselmeyer
Sebastian Weber
Mitchell Joblin
AI4CE
14
17
0
08 Sep 2021
An FEA surrogate model with Boundary Oriented Graph Embedding approach
An FEA surrogate model with Boundary Oriented Graph Embedding approach
XingYu Fu
Fengfeng Zhou
Dheeraj Peddireddy
Zhengyang Kang
M. Jun
Vaneet Aggarwal
AI4CE
56
2
0
30 Aug 2021
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive
  Benchmark Study
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study
Tianlong Chen
Kaixiong Zhou
Keyu Duan
Wenqing Zheng
Peihao Wang
Xia Hu
Zhangyang Wang
AAML
GNN
27
61
0
24 Aug 2021
Hierarchical graph neural nets can capture long-range interactions
Hierarchical graph neural nets can capture long-range interactions
Ladislav Rampášek
Guy Wolf
27
12
0
15 Jul 2021
Dirichlet Energy Constrained Learning for Deep Graph Neural Networks
Dirichlet Energy Constrained Learning for Deep Graph Neural Networks
Kaixiong Zhou
Xiao Shi Huang
Daochen Zha
Rui Chen
Li Li
Soo-Hyun Choi
Xia Hu
GNN
AI4CE
33
113
0
06 Jul 2021
Combinatorial Optimization with Physics-Inspired Graph Neural Networks
Combinatorial Optimization with Physics-Inspired Graph Neural Networks
M. Schuetz
J. K. Brubaker
H. Katzgraber
AI4CE
28
177
0
02 Jul 2021
Edge Proposal Sets for Link Prediction
Edge Proposal Sets for Link Prediction
Abhay Singh
Qian Huang
Sijia Huang
Omkar Bhalerao
Horace He
Ser-Nam Lim
Austin R. Benson
11
16
0
30 Jun 2021
Weisfeiler and Lehman Go Cellular: CW Networks
Weisfeiler and Lehman Go Cellular: CW Networks
Cristian Bodnar
Fabrizio Frasca
N. Otter
Yu Guang Wang
Pietro Lió
Guido Montúfar
M. Bronstein
GNN
33
224
0
23 Jun 2021
GRAND: Graph Neural Diffusion
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
36
253
0
21 Jun 2021
On the approximation capability of GNNs in node
  classification/regression tasks
On the approximation capability of GNNs in node classification/regression tasks
Giuseppe Alessio D’Inverno
Monica Bianchini
M. Sampoli
F. Scarselli
34
12
0
16 Jun 2021
Rethinking Graph Transformers with Spectral Attention
Rethinking Graph Transformers with Spectral Attention
Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
46
505
0
07 Jun 2021
How Attentive are Graph Attention Networks?
How Attentive are Graph Attention Networks?
Shaked Brody
Uri Alon
Eran Yahav
GNN
60
1,016
0
30 May 2021
Relational Graph Neural Network Design via Progressive Neural
  Architecture Search
Relational Graph Neural Network Design via Progressive Neural Architecture Search
Ailing Zeng
Minhao Liu
Zhiwei Liu
Ruiyuan Gao
Jing Qin
Qiang Xu
19
0
0
30 May 2021
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with
  Graphs
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs
Christopher Morris
Matthias Fey
Nils M. Kriege
GNN
31
23
0
12 May 2021
ResVGAE: Going Deeper with Residual Modules for Link Prediction
ResVGAE: Going Deeper with Residual Modules for Link Prediction
Indrit Nallbani
Reyhan Kevser Keser
Aydin Ayanzadeh
Nurullah cCalik
B. U. Toreyin
11
0
0
03 May 2021
RelTransformer: A Transformer-Based Long-Tail Visual Relationship
  Recognition
RelTransformer: A Transformer-Based Long-Tail Visual Relationship Recognition
Jun Chen
Aniket Agarwal
Sherif Abdelkarim
Deyao Zhu
Mohamed Elhoseiny
ViT
82
16
0
24 Apr 2021
Convolutions for Spatial Interaction Modeling
Convolutions for Spatial Interaction Modeling
Zhaoen Su
Chao Wang
David Bradley
Carlos Vallespi-Gonzalez
Carl K. Wellington
Nemanja Djuric
AI4CE
30
4
0
15 Apr 2021
RAN-GNNs: breaking the capacity limits of graph neural networks
RAN-GNNs: breaking the capacity limits of graph neural networks
D. Valsesia
Giulia Fracastoro
E. Magli
GNN
38
7
0
29 Mar 2021
Learning physical properties of anomalous random walks using graph
  neural networks
Learning physical properties of anomalous random walks using graph neural networks
Hippolyte Verdier
M. Duval
François Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
13
25
0
22 Mar 2021
Lipschitz Normalization for Self-Attention Layers with Application to
  Graph Neural Networks
Lipschitz Normalization for Self-Attention Layers with Application to Graph Neural Networks
George Dasoulas
Kevin Scaman
Aladin Virmaux
GNN
24
40
0
08 Mar 2021
Combinatorial optimization and reasoning with graph neural networks
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
32
347
0
18 Feb 2021
Learning Parametrised Graph Shift Operators
Learning Parametrised Graph Shift Operators
George Dasoulas
J. Lutzeyer
Michalis Vazirgiannis
OOD
21
21
0
25 Jan 2021
Type4Py: Practical Deep Similarity Learning-Based Type Inference for
  Python
Type4Py: Practical Deep Similarity Learning-Based Type Inference for Python
A. Mir
Evaldas Latoskinas
Sebastian Proksch
Georgios Gousios
140
59
0
12 Jan 2021
Binary Graph Neural Networks
Binary Graph Neural Networks
Mehdi Bahri
Gaétan Bahl
S. Zafeiriou
GNN
AI4CE
11
49
0
31 Dec 2020
Analyzing the Performance of Graph Neural Networks with Pipe Parallelism
Analyzing the Performance of Graph Neural Networks with Pipe Parallelism
M. Dearing
Xiaoyang Sean Wang
GNN
AI4CE
21
3
0
20 Dec 2020
Graph Neural Networks: Taxonomy, Advances and Trends
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
116
0
16 Dec 2020
Deep Graph Neural Networks with Shallow Subgraph Samplers
Hanqing Zeng
Muhan Zhang
Yinglong Xia
Ajitesh Srivastava
Andrey Malevich
Rajgopal Kannan
Viktor Prasanna
Long Jin
Ren Chen
GNN
14
24
0
02 Dec 2020
On Graph Neural Networks versus Graph-Augmented MLPs
On Graph Neural Networks versus Graph-Augmented MLPs
Lei Chen
Zhengdao Chen
Joan Bruna
21
44
0
28 Oct 2020
Directional Graph Networks
Directional Graph Networks
Dominique Beaini
Saro Passaro
Vincent Létourneau
William L. Hamilton
Gabriele Corso
Pietro Lió
58
184
0
06 Oct 2020
Data-Driven Learning of Geometric Scattering Networks
Data-Driven Learning of Geometric Scattering Networks
Alexander Tong
Frederik Wenkel
Kincaid MacDonald
Smita Krishnaswamy
Guy Wolf
GNN
17
5
0
06 Oct 2020
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible
  Control
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control
Vitaly Kurin
Maximilian Igl
Tim Rocktaschel
Wendelin Boehmer
Shimon Whiteson
AI4CE
27
86
0
05 Oct 2020
Hierarchical Message-Passing Graph Neural Networks
Hierarchical Message-Passing Graph Neural Networks
Zhiqiang Zhong
Cheng-Te Li
Jun Pang
30
46
0
08 Sep 2020
Graph-based Modeling of Online Communities for Fake News Detection
Graph-based Modeling of Online Communities for Fake News Detection
Shantanu Chandra
Pushkar Mishra
H. Yannakoudakis
Madhav Nimishakavi
Marzieh Saeidi
Ekaterina Shutova
GNN
21
44
0
14 Aug 2020
Improving the Long-Range Performance of Gated Graph Neural Networks
Improving the Long-Range Performance of Gated Graph Neural Networks
Denis Lukovnikov
Jens Lehmann
Asja Fischer
GNN
24
6
0
19 Jul 2020
Path Integral Based Convolution and Pooling for Graph Neural Networks
Path Integral Based Convolution and Pooling for Graph Neural Networks
Zheng Ma
Junyu Xuan
Yu Guang Wang
Ming Li
Pietro Lió
GNN
39
54
0
29 Jun 2020
Building powerful and equivariant graph neural networks with structural
  message-passing
Building powerful and equivariant graph neural networks with structural message-passing
Clément Vignac
Andreas Loukas
P. Frossard
31
119
0
26 Jun 2020
The Impact of Global Structural Information in Graph Neural Networks
  Applications
The Impact of Global Structural Information in Graph Neural Networks Applications
Davide Buffelli
Fabio Vandin
AI4CE
36
8
0
06 Jun 2020
Previous
123456789
Next