Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.05205
Cited By
v1
v2
v3
v4 (latest)
On the Bottleneck of Graph Neural Networks and its Practical Implications
9 June 2020
Uri Alon
Eran Yahav
GNN
Re-assign community
ArXiv (abs)
PDF
HTML
Github (94★)
Papers citing
"On the Bottleneck of Graph Neural Networks and its Practical Implications"
50 / 416 papers shown
Title
Weisfeiler and Leman Go Infinite: Spectral and Combinatorial Pre-Colorings
Or Feldman
A. Boyarski
Shai Feldman
D. Kogan
A. Mendelson
Chaim Baskin
92
16
0
31 Jan 2022
Graph Representation Learning via Aggregation Enhancement
Maxim Fishman
Chaim Baskin
Evgenii Zheltonozhskii
Almog David
Ron Banner
A. Mendelson
100
0
0
30 Jan 2022
Rewiring with Positional Encodings for Graph Neural Networks
Rickard Brüel-Gabrielsson
Mikhail Yurochkin
Justin Solomon
AI4CE
117
33
0
29 Jan 2022
How Expressive are Transformers in Spectral Domain for Graphs?
Anson Bastos
Abhishek Nadgeri
Kuldeep Singh
H. Kanezashi
Toyotaro Suzumura
I. Mulang'
83
12
0
23 Jan 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention
Zhanghao Wu
Paras Jain
Matthew A. Wright
Azalia Mirhoseini
Joseph E. Gonzalez
Ion Stoica
GNN
126
295
0
21 Jan 2022
Decoupling the Depth and Scope of Graph Neural Networks
Hanqing Zeng
Muhan Zhang
Yinglong Xia
Ajitesh Srivastava
Andrey Malevich
Rajgopal Kannan
Viktor Prasanna
Long Jin
Ren Chen
GNN
92
148
0
19 Jan 2022
Structure and position-aware graph neural network for airway labeling
Weiyi Xie
Colin Jacobs
Jean-Paul Charbonnier
Bram van Ginneken
42
11
0
12 Jan 2022
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten Borgwardt
GNN
129
118
0
18 Dec 2021
A graph representation based on fluid diffusion model for data analysis: theoretical aspects and enhanced community detection
Andrea Marinoni
Christian Jutten
Mark Girolami
229
2
0
07 Dec 2021
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
169
451
0
29 Nov 2021
StarNet: Joint Action-Space Prediction with Star Graphs and Implicit Global Frame Self-Attention
Faris Janjos
Maxim Dolgov
Johann Marius Zöllner
GNN
3DPC
71
17
0
26 Nov 2021
Image-Like Graph Representations for Improved Molecular Property Prediction
Toni Sagayaraj
Carsten Eickhoff
GNN
32
0
0
20 Nov 2021
AnchorGAE: General Data Clustering via
O
(
n
)
O(n)
O
(
n
)
Bipartite Graph Convolution
Hongyuan Zhang
Jiankun Shi
Rui Zhang
Xuelong Li
GNN
101
1
0
12 Nov 2021
LSP : Acceleration and Regularization of Graph Neural Networks via Locality Sensitive Pruning of Graphs
Eitan Kosman
J. Oren
Dotan Di Castro
42
0
0
10 Nov 2021
On Representation Knowledge Distillation for Graph Neural Networks
Chaitanya K. Joshi
Fayao Liu
Xu Xun
Jie Lin
Chuan-Sheng Foo
100
64
0
09 Nov 2021
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Wenqing Zheng
Edward W. Huang
Nikhil S. Rao
S. Katariya
Zhangyang Wang
Karthik Subbian
92
66
0
08 Nov 2021
Directional Message Passing on Molecular Graphs via Synthetic Coordinates
Johannes Klicpera
Chandan Yeshwanth
Stephan Günnemann
72
38
0
08 Nov 2021
GraphSearchNet: Enhancing GNNs via Capturing Global Dependencies for Semantic Code Search
Shangqing Liu
Xiaofei Xie
J. Siow
Lei Ma
Guozhu Meng
Yang Liu
GNN
108
55
0
04 Nov 2021
Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems
Wenqing Zheng
Qiangqiang Guo
H. Yang
Peihao Wang
Zhangyang Wang
AI4CE
46
12
0
29 Oct 2021
On Provable Benefits of Depth in Training Graph Convolutional Networks
Weilin Cong
M. Ramezani
M. Mahdavi
72
76
0
28 Oct 2021
Does your graph need a confidence boost? Convergent boosted smoothing on graphs with tabular node features
Jiuhai Chen
Jonas W. Mueller
V. Ioannidis
Soji Adeshina
Yangkun Wang
Tom Goldstein
David Wipf
102
12
0
26 Oct 2021
Parameter Prediction for Unseen Deep Architectures
Boris Knyazev
M. Drozdzal
Graham W. Taylor
Adriana Romero Soriano
OOD
119
83
0
25 Oct 2021
Gophormer: Ego-Graph Transformer for Node Classification
Jianan Zhao
Chaozhuo Li
Qian Wen
Yiqi Wang
Yuming Liu
Hao Sun
Xing Xie
Yanfang Ye
69
83
0
25 Oct 2021
FDGATII : Fast Dynamic Graph Attention with Initial Residual and Identity Mapping
Gayan K. Kulatilleke
Marius Portmann
Ryan K. L. Ko
Shekhar S. Chandra
103
9
0
21 Oct 2021
Beltrami Flow and Neural Diffusion on Graphs
B. Chamberlain
J. Rowbottom
D. Eynard
Francesco Di Giovanni
Xiaowen Dong
M. Bronstein
AI4CE
88
86
0
18 Oct 2021
ifMixup: Interpolating Graph Pair to Regularize Graph Classification
Hongyu Guo
Yongyi Mao
65
11
0
18 Oct 2021
Graph Neural Networks with Learnable Structural and Positional Representations
Vijay Prakash Dwivedi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
GNN
297
331
0
15 Oct 2021
Power to the Relational Inductive Bias: Graph Neural Networks in Electrical Power Grids
Martin Ringsquandl
Houssem Sellami
Marcel Hildebrandt
Dagmar Beyer
S. Henselmeyer
Sebastian Weber
Mitchell Joblin
AI4CE
33
18
0
08 Sep 2021
An FEA surrogate model with Boundary Oriented Graph Embedding approach
XingYu Fu
Fengfeng Zhou
Dheeraj Peddireddy
Zhengyang Kang
M. Jun
Vaneet Aggarwal
AI4CE
68
2
0
30 Aug 2021
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study
Tianlong Chen
Kaixiong Zhou
Keyu Duan
Wenqing Zheng
Peihao Wang
Helen Zhou
Zhangyang Wang
AAML
GNN
65
66
0
24 Aug 2021
Hierarchical graph neural nets can capture long-range interactions
Ladislav Rampášek
Guy Wolf
101
14
0
15 Jul 2021
Dirichlet Energy Constrained Learning for Deep Graph Neural Networks
Kaixiong Zhou
Xiao Shi Huang
Daochen Zha
Rui Chen
Li Li
Soo-Hyun Choi
Helen Zhou
GNN
AI4CE
79
119
0
06 Jul 2021
Combinatorial Optimization with Physics-Inspired Graph Neural Networks
M. Schuetz
J. K. Brubaker
H. Katzgraber
AI4CE
113
188
0
02 Jul 2021
Edge Proposal Sets for Link Prediction
Abhay Singh
Qian Huang
Sijia Huang
Omkar Bhalerao
Horace He
Ser-Nam Lim
Austin R. Benson
40
16
0
30 Jun 2021
Weisfeiler and Lehman Go Cellular: CW Networks
Cristian Bodnar
Fabrizio Frasca
N. Otter
Yu Guang Wang
Pietro Lio
Guido Montúfar
M. Bronstein
GNN
139
238
0
23 Jun 2021
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
132
270
0
21 Jun 2021
On the approximation capability of GNNs in node classification/regression tasks
Giuseppe Alessio D’Inverno
Monica Bianchini
M. Sampoli
F. Scarselli
123
12
0
16 Jun 2021
Rethinking Graph Transformers with Spectral Attention
Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
146
549
0
07 Jun 2021
How Attentive are Graph Attention Networks?
Shaked Brody
Uri Alon
Eran Yahav
GNN
145
1,095
0
30 May 2021
Relational Graph Neural Network Design via Progressive Neural Architecture Search
Ailing Zeng
Minhao Liu
Zhiwei Liu
Ruiyuan Gao
Jing Qin
Qiang Xu
90
0
0
30 May 2021
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs
Christopher Morris
Matthias Fey
Nils M. Kriege
GNN
55
24
0
12 May 2021
ResVGAE: Going Deeper with Residual Modules for Link Prediction
Indrit Nallbani
Reyhan Kevser Keser
Aydin Ayanzadeh
Nurullah cCalik
B. U. Toreyin
21
0
0
03 May 2021
RelTransformer: A Transformer-Based Long-Tail Visual Relationship Recognition
Jun Chen
Aniket Agarwal
Sherif Abdelkarim
Deyao Zhu
Mohamed Elhoseiny
ViT
150
17
0
24 Apr 2021
Convolutions for Spatial Interaction Modeling
Zhaoen Su
Chao Wang
David Bradley
Carlos Vallespi-Gonzalez
Carl K. Wellington
Nemanja Djuric
AI4CE
77
4
0
15 Apr 2021
RAN-GNNs: breaking the capacity limits of graph neural networks
D. Valsesia
Giulia Fracastoro
E. Magli
GNN
77
7
0
29 Mar 2021
Learning physical properties of anomalous random walks using graph neural networks
Hippolyte Verdier
M. Duval
François Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
71
25
0
22 Mar 2021
Lipschitz Normalization for Self-Attention Layers with Application to Graph Neural Networks
George Dasoulas
Kevin Scaman
Aladin Virmaux
GNN
85
39
0
08 Mar 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
128
361
0
18 Feb 2021
Learning Parametrised Graph Shift Operators
George Dasoulas
J. Lutzeyer
Michalis Vazirgiannis
OOD
61
22
0
25 Jan 2021
Type4Py: Practical Deep Similarity Learning-Based Type Inference for Python
A. Mir
Evaldas Latoskinas
Sebastian Proksch
Georgios Gousios
234
60
0
12 Jan 2021
Previous
1
2
3
4
5
6
7
8
9
Next