Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.05205
Cited By
v1
v2
v3
v4 (latest)
On the Bottleneck of Graph Neural Networks and its Practical Implications
9 June 2020
Uri Alon
Eran Yahav
GNN
Re-assign community
ArXiv (abs)
PDF
HTML
Github (94★)
Papers citing
"On the Bottleneck of Graph Neural Networks and its Practical Implications"
50 / 416 papers shown
Title
The Self-Loop Paradox: Investigating the Impact of Self-Loops on Graph Neural Networks
Moritz Lampert
Ingo Scholtes
GNN
SSL
56
3
0
04 Dec 2023
Recurrent Distance Filtering for Graph Representation Learning
Yuhui Ding
Antonio Orvieto
Bobby He
Thomas Hofmann
GNN
136
8
0
03 Dec 2023
Improving embedding of graphs with missing data by soft manifolds
Andrea Marinoni
Pietro Lio
Alessandro Barp
Christian Jutten
Mark Girolami
70
0
0
29 Nov 2023
Over-Squashing in Riemannian Graph Neural Networks
Julia Balla
72
1
0
27 Nov 2023
Effective Structural Encodings via Local Curvature Profiles
Lukas Fesser
Melanie Weber
85
3
0
24 Nov 2023
Learning to Optimise Wind Farms with Graph Transformers
Siyi Li
Arnaud Robert
A. A. Faisal
M. Piggott
45
5
0
21 Nov 2023
Content Augmented Graph Neural Networks
Fatemeh Gholamzadeh Nasrabadi
AmirHossein Kashani
Pegah Zahedi
M. H. Chehreghani
68
3
0
21 Nov 2023
AMES: A Differentiable Embedding Space Selection Framework for Latent Graph Inference
Yuan Lu
Haitz Sáez de Ocáriz Borde
Pietro Lio
80
2
0
20 Nov 2023
Higher-Order Expander Graph Propagation
Thomas Christie
Yu He
76
4
0
14 Nov 2023
Exposition on over-squashing problem on GNNs: Current Methods, Benchmarks and Challenges
Dai Shi
Andi Han
Lequan Lin
Yi Guo
Junbin Gao
123
14
0
13 Nov 2023
Multiscale Neural Operators for Solving Time-Independent PDEs
Winfried Ripken
Lisa Coiffard
Felix Pieper
Sebastian Dziadzio
AI4CE
57
2
0
10 Nov 2023
Mixture of Weak & Strong Experts on Graphs
Hanqing Zeng
Hanjia Lyu
Diyi Hu
Yinglong Xia
Jiebo Luo
95
4
0
09 Nov 2023
Hybrid Focal and Full-Range Attention Based Graph Transformers
Minhong Zhu
Zhenhao Zhao
Weiran Cai
72
0
0
08 Nov 2023
Sparse Training of Discrete Diffusion Models for Graph Generation
Yiming Qin
Clément Vignac
Pascal Frossard
76
14
0
03 Nov 2023
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Yuyan Ni
Shikun Feng
Wei-Ying Ma
Zhiming Ma
Yanyan Lan
DiffM
AI4CE
82
11
0
03 Nov 2023
A Graph-to-Text Approach to Knowledge-Grounded Response Generation in Human-Robot Interaction
Nicholas Walker
Stefan Ultes
Pierre Lison
LM&Ro
159
1
0
03 Nov 2023
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel
Xuan Li
Zhanke Zhou
Jiangchao Yao
Yu Rong
Lu Zhang
Bo Han
118
5
0
02 Nov 2023
Diversified Node Sampling based Hierarchical Transformer Pooling for Graph Representation Learning
Gaichao Li
Jinsong Chen
John E. Hopcroft
Kun He
46
0
0
31 Oct 2023
Transformers as Graph-to-Graph Models
James Henderson
Alireza Mohammadshahi
Andrei Catalin Coman
Lesly Miculicich
GNN
69
6
0
27 Oct 2023
Multi-omics Sampling-based Graph Transformer for Synthetic Lethality Prediction
Xusheng Zhao
Hao Liu
Qiong Dai
Hao Peng
Xu Bai
Huailiang Peng
46
2
0
17 Oct 2023
SignGT: Signed Attention-based Graph Transformer for Graph Representation Learning
Jinsong Chen
Gaichao Li
John E. Hopcroft
Kun He
SLR
88
5
0
17 Oct 2023
From Continuous Dynamics to Graph Neural Networks: Neural Diffusion and Beyond
Andi Han
Dai Shi
Lequan Lin
Junbin Gao
AI4CE
GNN
105
24
0
16 Oct 2023
Non-backtracking Graph Neural Networks
Seonghyun Park
Narae Ryu
Ga-Rin Kim
Dongyeop Woo
Se-Young Yun
SungSoo Ahn
84
4
0
11 Oct 2023
Are GATs Out of Balance?
Nimrah Mustafa
Aleksandar Bojchevski
R. Burkholz
130
5
0
11 Oct 2023
Flood and Echo Net: Algorithmically Aligned GNNs that Generalize
Joël Mathys
Florian Grötschla
K. Nadimpalli
Roger Wattenhofer
FedML
84
0
0
10 Oct 2023
Tailoring Self-Attention for Graph via Rooted Subtrees
Siyuan Huang
Yunchong Song
Jiayue Zhou
Zhouhan Lin
81
8
0
08 Oct 2023
Latent Graph Inference with Limited Supervision
Jianglin Lu
Yi Tian Xu
Huan Wang
Yue Bai
Yun Fu
71
4
0
06 Oct 2023
On the Two Sides of Redundancy in Graph Neural Networks
Vidya Sagar Sharma
Samir Moustafa
Johannes Langguth
Wilfried N. Gansterer
Nils M. Kriege
84
2
0
06 Oct 2023
Fishnets: Information-Optimal, Scalable Aggregation for Sets and Graphs
T. Lucas Makinen
Justin Alsing
Benjamin Dan Wandelt
GNN
FedML
65
3
0
05 Oct 2023
Probabilistically Rewired Message-Passing Neural Networks
Chendi Qian
Andrei Manolache
Kareem Ahmed
Zhe Zeng
Guy Van den Broeck
Mathias Niepert
Christopher Morris
150
15
0
03 Oct 2023
Transformers are efficient hierarchical chemical graph learners
Zihan Pengmei
Zimu Li
Chih-chan Tien
Risi Kondor
Aaron R Dinner
GNN
48
2
0
02 Oct 2023
Locality-Aware Graph-Rewiring in GNNs
Federico Barbero
A. Velingker
Amin Saberi
Michael M. Bronstein
Francesco Di Giovanni
108
33
0
02 Oct 2023
Cooperative Graph Neural Networks
Ben Finkelshtein
Xingyue Huang
Michael M. Bronstein
.Ismail .Ilkan Ceylan
GNN
110
26
0
02 Oct 2023
ResolvNet: A Graph Convolutional Network with multi-scale Consistency
Christian Koke
Abhishek Saroha
Yuesong Shen
Marvin Eisenberger
Daniel Cremers
GNN
54
1
0
30 Sep 2023
Deep Prompt Tuning for Graph Transformers
Reza Shirkavand
Heng-Chiao Huang
57
7
0
18 Sep 2023
Mitigating Over-Smoothing and Over-Squashing using Augmentations of Forman-Ricci Curvature
Lukas Fesser
Melanie Weber
100
25
0
17 Sep 2023
Motif-aware Attribute Masking for Molecular Graph Pre-training
Eric Inae
Gang Liu
Meng Jiang
AI4CE
122
14
0
08 Sep 2023
Graph Neural Networks Use Graphs When They Shouldn't
Maya Bechler-Speicher
Ido Amos
Ran Gilad-Bachrach
Amir Globerson
GNN
AI4CE
45
15
0
08 Sep 2023
Curve Your Attention: Mixed-Curvature Transformers for Graph Representation Learning
Sungjun Cho
Seunghyuk Cho
Sungwoo Park
Hankook Lee
Ho Hin Lee
Moontae Lee
111
7
0
08 Sep 2023
Unifying over-smoothing and over-squashing in graph neural networks: A physics informed approach and beyond
Zhiqi Shao
Dai Shi
Andi Han
Yi Guo
Qianchuan Zhao
Junbin Gao
79
12
0
06 Sep 2023
Hierarchical Grammar-Induced Geometry for Data-Efficient Molecular Property Prediction
Minghao Guo
Veronika Thost
Samuel W Song
A. Balachandran
Payel Das
Jie Chen
Wojciech Matusik
AI4CE
71
0
0
04 Sep 2023
Curvature-based Pooling within Graph Neural Networks
Cedric Sanders
Andreas Roth
Thomas Liebig
80
5
0
31 Aug 2023
TransGNN: Harnessing the Collaborative Power of Transformers and Graph Neural Networks for Recommender Systems
Peiyan Zhang
Yuchen Yan
Xi Zhang
Chaozhuo Li
Senzhang Wang
Feiran Huang
Sunghun Kim
79
22
0
28 Aug 2023
Enhancing Graph Transformers with Hierarchical Distance Structural Encoding
Yuan Luo
Hongkang Li
Lei Shi
Xiao-Ming Wu
78
8
0
22 Aug 2023
Investigating the Interplay between Features and Structures in Graph Learning
Daniele Castellana
Federico Errica
101
4
0
18 Aug 2023
Half-Hop: A graph upsampling approach for slowing down message passing
Mehdi Azabou
Venkataraman Ganesh
S. Thakoor
Chi-Heng Lin
Lakshmi Sathidevi
Ran Liu
Michal Valko
Petar Velickovic
Eva L. Dyer
97
23
0
17 Aug 2023
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
231
26
0
16 Aug 2023
Label Inference Attacks against Node-level Vertical Federated GNNs
Marco Arazzi
Mauro Conti
Stefanos Koffas
Marina Krček
Antonino Nocera
S. Picek
Jing Xu
FedML
AAML
55
1
0
04 Aug 2023
Graph Neural Networks for Forecasting Multivariate Realized Volatility with Spillover Effects
Chao Zhang
Xingyue Pu
Ning Zhang
Xiaowen Dong
24
4
0
01 Aug 2023
Feature Transportation Improves Graph Neural Networks
Moshe Eliasof
E. Haber
Eran Treister
GNN
109
12
0
29 Jul 2023
Previous
1
2
3
4
5
6
7
8
9
Next