ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04981
  4. Cited By
A Framework for Neural Network Pruning Using Gibbs Distributions

A Framework for Neural Network Pruning Using Gibbs Distributions

8 June 2020
Alex Labach
S. Valaee
ArXivPDFHTML

Papers citing "A Framework for Neural Network Pruning Using Gibbs Distributions"

37 / 37 papers shown
Title
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
233
1,040
0
06 Mar 2020
Learning Sparse Networks Using Targeted Dropout
Learning Sparse Networks Using Targeted Dropout
Aidan Gomez
Ivan Zhang
Siddhartha Rao Kamalakara
Divyam Madaan
Kevin Swersky
Y. Gal
Geoffrey E. Hinton
34
98
0
31 May 2019
Attention Based Pruning for Shift Networks
Attention Based Pruning for Shift Networks
G. B. Hacene
Carlos Lassance
Vincent Gripon
Matthieu Courbariaux
Yoshua Bengio
50
25
0
29 May 2019
Survey of Dropout Methods for Deep Neural Networks
Survey of Dropout Methods for Deep Neural Networks
Alex Labach
Hojjat Salehinejad
S. Valaee
38
149
0
25 Apr 2019
The State of Sparsity in Deep Neural Networks
The State of Sparsity in Deep Neural Networks
Trevor Gale
Erich Elsen
Sara Hooker
77
755
0
25 Feb 2019
Filter Pruning via Geometric Median for Deep Convolutional Neural
  Networks Acceleration
Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration
Yang He
Ping Liu
Ziwei Wang
Zhilan Hu
Yi Yang
AAML
3DPC
54
1,044
0
01 Nov 2018
Discrimination-aware Channel Pruning for Deep Neural Networks
Discrimination-aware Channel Pruning for Deep Neural Networks
Zhuangwei Zhuang
Mingkui Tan
Bohan Zhuang
Jing Liu
Yong Guo
Qingyao Wu
Junzhou Huang
Jin-Hui Zhu
89
597
0
28 Oct 2018
Rethinking the Value of Network Pruning
Rethinking the Value of Network Pruning
Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
21
1,460
0
11 Oct 2018
Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks
Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks
Yang He
Guoliang Kang
Xuanyi Dong
Yanwei Fu
Yi Yang
AAML
VLM
43
960
0
21 Aug 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
134
3,433
0
09 Mar 2018
AMC: AutoML for Model Compression and Acceleration on Mobile Devices
AMC: AutoML for Model Compression and Acceleration on Mobile Devices
Yihui He
Ji Lin
Zhijian Liu
Hanrui Wang
Li Li
Song Han
60
1,346
0
10 Feb 2018
Rethinking the Smaller-Norm-Less-Informative Assumption in Channel
  Pruning of Convolution Layers
Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers
Jianbo Ye
Xin Lu
Zhe Lin
Jianmin Wang
52
406
0
01 Feb 2018
Learning Sparse Neural Networks through $L_0$ Regularization
Learning Sparse Neural Networks through L0L_0L0​ Regularization
Christos Louizos
Max Welling
Diederik P. Kingma
159
1,136
0
04 Dec 2017
NISP: Pruning Networks using Neuron Importance Score Propagation
NISP: Pruning Networks using Neuron Importance Score Propagation
Ruichi Yu
Ang Li
Chun-Fu Chen
Jui-Hsin Lai
Vlad I. Morariu
Xintong Han
M. Gao
Ching-Yung Lin
L. Davis
53
798
0
16 Nov 2017
To prune, or not to prune: exploring the efficacy of pruning for model
  compression
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
104
1,262
0
05 Oct 2017
Learning Efficient Convolutional Networks through Network Slimming
Learning Efficient Convolutional Networks through Network Slimming
Zhuang Liu
Jianguo Li
Zhiqiang Shen
Gao Huang
Shoumeng Yan
Changshui Zhang
89
2,407
0
22 Aug 2017
ThiNet: A Filter Level Pruning Method for Deep Neural Network
  Compression
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression
Jian-Hao Luo
Jianxin Wu
Weiyao Lin
30
1,751
0
20 Jul 2017
Channel Pruning for Accelerating Very Deep Neural Networks
Channel Pruning for Accelerating Very Deep Neural Networks
Yihui He
Xiangyu Zhang
Jian Sun
186
2,513
0
19 Jul 2017
Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain
  Surgeon
Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon
Xin Luna Dong
Shangyu Chen
Sinno Jialin Pan
78
501
0
22 May 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.0K
20,692
0
17 Apr 2017
Variational Dropout Sparsifies Deep Neural Networks
Variational Dropout Sparsifies Deep Neural Networks
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
63
825
0
19 Jan 2017
Quantized Neural Networks: Training Neural Networks with Low Precision
  Weights and Activations
Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations
Itay Hubara
Matthieu Courbariaux
Daniel Soudry
Ran El-Yaniv
Yoshua Bengio
MQ
80
1,852
0
22 Sep 2016
Pruning Filters for Efficient ConvNets
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
151
3,676
0
31 Aug 2016
Dynamic Network Surgery for Efficient DNNs
Dynamic Network Surgery for Efficient DNNs
Yiwen Guo
Anbang Yao
Yurong Chen
50
1,054
0
16 Aug 2016
Learning Structured Sparsity in Deep Neural Networks
Learning Structured Sparsity in Deep Neural Networks
W. Wen
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
86
2,331
0
12 Aug 2016
Network Trimming: A Data-Driven Neuron Pruning Approach towards
  Efficient Deep Architectures
Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures
Hengyuan Hu
Rui Peng
Yu-Wing Tai
Chi-Keung Tang
41
885
0
12 Jul 2016
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
102
7,448
0
24 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.1K
192,638
0
10 Dec 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
170
8,793
0
01 Oct 2015
Learning both Weights and Connections for Efficient Neural Networks
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
173
6,628
0
08 Jun 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
104
19,448
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
493
149,474
0
22 Dec 2014
FitNets: Hints for Thin Deep Nets
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
197
3,862
0
19 Dec 2014
Exploiting Linear Structure Within Convolutional Networks for Efficient
  Evaluation
Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
Emily L. Denton
Wojciech Zaremba
Joan Bruna
Yann LeCun
Rob Fergus
FAtt
85
1,682
0
02 Apr 2014
Predicting Parameters in Deep Learning
Predicting Parameters in Deep Learning
Misha Denil
B. Shakibi
Laurent Dinh
MarcÁurelio Ranzato
Nando de Freitas
OOD
110
1,314
0
03 Jun 2013
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
345
7,650
0
03 Jul 2012
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
280
3,278
0
09 Jun 2012
1