ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04349
  4. Cited By
Distributional Robustness with IPMs and links to Regularization and GANs

Distributional Robustness with IPMs and links to Regularization and GANs

8 June 2020
Hisham Husain
ArXiv (abs)PDFHTML

Papers citing "Distributional Robustness with IPMs and links to Regularization and GANs"

20 / 20 papers shown
Title
Fair Representation Learning for Continuous Sensitive Attributes using Expectation of Integral Probability Metrics
Fair Representation Learning for Continuous Sensitive Attributes using Expectation of Integral Probability Metrics
Insung Kong
Kunwoong Kim
Yongdai Kim
FaML
172
1
0
09 May 2025
Rejection via Learning Density Ratios
Rejection via Learning Density Ratios
Alexander Soen
Hisham Husain
Philip Schulz
Vu-Linh Nguyen
122
2
0
29 May 2024
Generalised Lipschitz Regularisation Equals Distributional Robustness
Generalised Lipschitz Regularisation Equals Distributional Robustness
Zac Cranko
Zhan Shi
Xinhua Zhang
Richard Nock
Simon Kornblith
OOD
72
21
0
11 Feb 2020
A Direct Approach to Robust Deep Learning Using Adversarial Networks
A Direct Approach to Robust Deep Learning Using Adversarial Networks
Huaxia Wang
Chun-Nam Yu
GANAAMLOOD
71
77
0
23 May 2019
Lipschitz Generative Adversarial Nets
Lipschitz Generative Adversarial Nets
Zhiming Zhou
Jiadong Liang
Yuxuan Song
Lantao Yu
Hongwei Wang
Weinan Zhang
Yong Yu
Zhihua Zhang
GAN
56
78
0
15 Feb 2019
The Inductive Bias of Restricted f-GANs
The Inductive Bias of Restricted f-GANs
Shuang Liu
Kamalika Chaudhuri
GAN
45
18
0
12 Sep 2018
On gradient regularizers for MMD GANs
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
64
95
0
29 May 2018
Constructing Unrestricted Adversarial Examples with Generative Models
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GANAAML
214
307
0
21 May 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using
  Generative Models
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAMLGAN
84
1,178
0
17 May 2018
Demystifying MMD GANs
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
157
1,500
0
04 Jan 2018
The Robust Manifold Defense: Adversarial Training using Generative
  Models
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
66
174
0
26 Dec 2017
Generative Adversarial Perturbations
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAMLGANWIGM
72
355
0
06 Dec 2017
Generating Natural Adversarial Examples
Generating Natural Adversarial Examples
Zhengli Zhao
Dheeru Dua
Sameer Singh
GANAAML
183
601
0
31 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
310
12,117
0
19 Jun 2017
Fisher GAN
Fisher GAN
Youssef Mroueh
Tom Sercu
GANAI4CE
57
132
0
26 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
138
808
0
28 Apr 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,558
0
31 Mar 2017
Statistics of Robust Optimization: A Generalized Empirical Likelihood
  Approach
Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach
John C. Duchi
Peter Glynn
Hongseok Namkoong
104
323
0
11 Oct 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
154
1,658
0
02 Jun 2016
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
277
14,961
1
21 Dec 2013
1