ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.04542
17
18

The Inductive Bias of Restricted f-GANs

12 September 2018
Shuang Liu
Kamalika Chaudhuri
    GAN
ArXivPDFHTML
Abstract

Generative adversarial networks are a novel method for statistical inference that have achieved much empirical success; however, the factors contributing to this success remain ill-understood. In this work, we attempt to analyze generative adversarial learning -- that is, statistical inference as the result of a game between a generator and a discriminator -- with the view of understanding how it differs from classical statistical inference solutions such as maximum likelihood inference and the method of moments. Specifically, we provide a theoretical characterization of the distribution inferred by a simple form of generative adversarial learning called restricted f-GANs -- where the discriminator is a function in a given function class, the distribution induced by the generator is restricted to lie in a pre-specified distribution class and the objective is similar to a variational form of the f-divergence. A consequence of our result is that for linear KL-GANs -- that is, when the discriminator is a linear function over some feature space and f corresponds to the KL-divergence -- the distribution induced by the optimal generator is neither the maximum likelihood nor the method of moments solution, but an interesting combination of both.

View on arXiv
Comments on this paper