ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.03680
  4. Cited By
Evaluating the Disentanglement of Deep Generative Models through
  Manifold Topology

Evaluating the Disentanglement of Deep Generative Models through Manifold Topology

5 June 2020
Sharon Zhou
E. Zelikman
F. Lu
A. Ng
Gunnar Carlsson
Stefano Ermon
    DRL
ArXivPDFHTML

Papers citing "Evaluating the Disentanglement of Deep Generative Models through Manifold Topology"

11 / 11 papers shown
Title
Towards Scalable Topological Regularizers
Towards Scalable Topological Regularizers
Hiu-Tung Wong
Darrick Lee
Hong Yan
BDL
64
0
0
24 Jan 2025
Disentanglement Learning via Topology
Disentanglement Learning via Topology
Nikita Balabin
Daria Voronkova
I. Trofimov
Evgeny Burnaev
S. Barannikov
DRL
60
2
0
24 Aug 2023
Wasserstein Auto-Encoders of Merge Trees (and Persistence Diagrams)
Wasserstein Auto-Encoders of Merge Trees (and Persistence Diagrams)
Mathieu Pont
Julien Tierny
26
3
0
05 Jul 2023
Representation Topology Divergence: A Method for Comparing Neural
  Network Representations
Representation Topology Divergence: A Method for Comparing Neural Network Representations
S. Barannikov
I. Trofimov
Nikita Balabin
Evgeny Burnaev
3DPC
40
45
0
31 Dec 2021
Activation Landscapes as a Topological Summary of Neural Network
  Performance
Activation Landscapes as a Topological Summary of Neural Network Performance
Matthew Wheeler
Jose J. Bouza
Peter Bubenik
34
19
0
19 Oct 2021
The decomposition of the higher-order homology embedding constructed
  from the $k$-Laplacian
The decomposition of the higher-order homology embedding constructed from the kkk-Laplacian
Yu-Chia Chen
M. Meilă
32
9
0
23 Jul 2021
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Xiao Liu
Spyridon Thermos
Gabriele Valvano
A. Chartsias
Alison Q. OÑeil
Sotirios A. Tsaftaris
CoGe
DRL
32
18
0
27 Aug 2020
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
306
10,378
0
12 Dec 2018
Disentangling Adversarial Robustness and Generalization
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
194
275
0
03 Dec 2018
Statistical topological data analysis using persistence landscapes
Statistical topological data analysis using persistence landscapes
Peter Bubenik
114
846
0
27 Jul 2012
1