ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00104
  4. Cited By
OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal
  Transport
v1v2v3v4v5 (latest)

OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport

29 May 2020
Derek Onken
Samy Wu Fung
Xingjian Li
Lars Ruthotto
    OT
ArXiv (abs)PDFHTML

Papers citing "OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport"

36 / 36 papers shown
Title
Local Flow Matching Generative Models
Local Flow Matching Generative Models
Chen Xu
Xiuyuan Cheng
Yao Xie
130
2
0
03 Jan 2025
TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization
TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization
Chia-Yu Hung
Navonil Majumder
Zhifeng Kong
Ambuj Mehrish
Rafael Valle
Bryan Catanzaro
Soujanya Poria
Bryan Catanzaro
Soujanya Poria
147
10
0
30 Dec 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
102
2
0
29 Jul 2024
Generative Topological Networks
Generative Topological Networks
Alona Levy-Jurgenson
Z. Yakhini
127
0
0
21 Jun 2024
Computing high-dimensional optimal transport by flow neural networks
Computing high-dimensional optimal transport by flow neural networks
Chen Xu
Xiuyuan Cheng
Yao Xie
OT
146
5
0
19 May 2023
Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression
  and Continuous Normalizing Flows
Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression and Continuous Normalizing Flows
Derek Onken
Lars Ruthotto
BDL
75
54
0
27 May 2020
How to train your neural ODE: the world of Jacobian and kinetic
  regularization
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
73
302
0
07 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
215
1,718
0
05 Dec 2019
A Machine Learning Framework for Solving High-Dimensional Mean Field
  Game and Mean Field Control Problems
A Machine Learning Framework for Solving High-Dimensional Mean Field Game and Mean Field Control Problems
Lars Ruthotto
Stanley Osher
Wuchen Li
L. Nurbekyan
Samy Wu Fung
AI4CE
152
220
0
04 Dec 2019
Discriminator optimal transport
Discriminator optimal transport
A. Tanaka
OT
73
54
0
15 Oct 2019
Fluid Flow Mass Transport for Generative Networks
Fluid Flow Mass Transport for Generative Networks
Jingrong Lin
Keegan Lensink
Dirk Soffker
GAN
70
8
0
03 Oct 2019
Potential Flow Generator with $L_2$ Optimal Transport Regularity for
  Generative Models
Potential Flow Generator with L2L_2L2​ Optimal Transport Regularity for Generative Models
Liu Yang
George Karniadakis
OT
58
43
0
29 Aug 2019
Unconstrained Monotonic Neural Networks
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
256
149
0
14 Aug 2019
MadMiner: Machine learning-based inference for particle physics
MadMiner: Machine learning-based inference for particle physics
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
72
115
0
24 Jul 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
194
778
0
10 Jun 2019
ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural
  ODEs
ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs
A. Gholami
Kurt Keutzer
George Biros
116
172
0
27 Feb 2019
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
163
881
0
02 Oct 2018
Monge-Ampère Flow for Generative Modeling
Monge-Ampère Flow for Generative Modeling
Linfeng Zhang
E. Weinan
Lei Wang
DRL
92
63
0
26 Sep 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
308
3,144
0
09 Jul 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
463
5,176
0
19 Jun 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRLAI4CE
156
446
0
03 Apr 2018
Improving GANs Using Optimal Transport
Improving GANs Using Optimal Transport
Tim Salimans
Han Zhang
Alec Radford
Dimitris N. Metaxas
OTGAN
84
324
0
15 Mar 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
246
2,158
0
01 Mar 2018
On the Convergence and Robustness of Training GANs with Regularized
  Optimal Transport
On the Convergence and Robustness of Training GANs with Regularized Optimal Transport
Maziar Sanjabi
Jimmy Ba
Meisam Razaviyayn
Jason D. Lee
GAN
92
139
0
22 Feb 2018
Maximum Principle Based Algorithms for Deep Learning
Maximum Principle Based Algorithms for Deep Learning
Qianxiao Li
Long Chen
Cheng Tai
E. Weinan
116
224
0
26 Oct 2017
A Geometric View of Optimal Transportation and Generative Model
A Geometric View of Optimal Transportation and Generative Model
Na Lei
Kehua Su
Li-min Cui
S. Yau
X. Gu
GANOT
64
134
0
16 Oct 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
123
57
0
04 Sep 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
229
1,360
0
19 May 2017
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDLDRL
162
1,825
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,723
0
26 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
153
1,147
0
05 Nov 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
324
4,198
0
21 May 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OODSyDaUQCV
193
874
0
12 Feb 2015
Generative Moment Matching Networks
Generative Moment Matching Networks
Yujia Li
Kevin Swersky
R. Zemel
OODGAN
127
847
0
10 Feb 2015
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
146
2,269
0
30 Oct 2014
1