Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.10224
Cited By
The Random Feature Model for Input-Output Maps between Banach Spaces
20 May 2020
Nicholas H. Nelsen
Andrew M. Stuart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Random Feature Model for Input-Output Maps between Banach Spaces"
36 / 36 papers shown
Title
PODNO: Proper Orthogonal Decomposition Neural Operators
Zilan Cheng
Zhongjian Wang
Li-Lian Wang
Mejdi Azaiez
34
0
0
25 Apr 2025
On the choice of the non-trainable internal weights in random feature maps
Pinak Mandal
Georg Gottwald
Nicholas Cranch
TPM
40
1
0
07 Aug 2024
Neural Operator-Based Proxy for Reservoir Simulations Considering Varying Well Settings, Locations, and Permeability Fields
Daniel Badawi
Eduardo Gildin
OOD
AI4CE
13
4
0
13 Jul 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
25
5
0
30 Jun 2024
Discretization Error of Fourier Neural Operators
S. Lanthaler
Andrew M. Stuart
Margaret Trautner
35
4
0
03 May 2024
Inverse Problems with Learned Forward Operators
Simon Arridge
Andreas Hauptmann
Yury Korolev
28
1
0
21 Nov 2023
Error Bounds for Learning with Vector-Valued Random Features
S. Lanthaler
Nicholas H. Nelsen
27
12
0
26 May 2023
Nonlocality and Nonlinearity Implies Universality in Operator Learning
S. Lanthaler
Zong-Yi Li
Andrew M. Stuart
18
16
0
26 Apr 2023
Score-based Diffusion Models in Function Space
Jae Hyun Lim
Nikola B. Kovachki
Ricardo Baptista
Christopher Beckham
Kamyar Azizzadenesheli
...
Karsten Kreis
Jan Kautz
Christopher Pal
Arash Vahdat
Anima Anandkumar
DiffM
70
37
0
14 Feb 2023
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations
Arnulf Jentzen
Adrian Riekert
Philippe von Wurstemberger
21
1
0
07 Feb 2023
An Enhanced V-cycle MgNet Model for Operator Learning in Numerical Partial Differential Equations
Jianqing Zhu
Juncai He
Qiumei Huang
30
4
0
02 Feb 2023
Learning Functional Transduction
Mathieu Chalvidal
Thomas Serre
Rufin VanRullen
AI4CE
32
2
0
01 Feb 2023
KoopmanLab: machine learning for solving complex physics equations
Wei Xiong
Muyuan Ma
Xiaomeng Huang
Ziyang Zhang
Pei Sun
Yang Tian
AI4CE
26
13
0
03 Jan 2023
SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics
Esha Saha
L. Ho
Giang Tran
36
5
0
11 Nov 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
24
17
0
27 Oct 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
13
9
0
02 Aug 2022
Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization with Infinite Dimensional Decision Spaces
Johannes Milz
T. Surowiec
23
4
0
29 Jul 2022
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
29
39
0
21 Jun 2022
NOMAD: Nonlinear Manifold Decoders for Operator Learning
Jacob H. Seidman
Georgios Kissas
P. Perdikaris
George J. Pappas
AI4CE
23
68
0
07 Jun 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
42
140
0
26 May 2022
Neural Operator with Regularity Structure for Modeling Dynamics Driven by SPDEs
Peiyan Hu
Qi Meng
Bin Chen
Shiqi Gong
Yue Wang
Wei Chen
Rongchan Zhu
Zhirui Ma
Tie-Yan Liu
AI4CE
19
11
0
13 Apr 2022
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
20
155
0
12 Feb 2022
Towards Empirical Process Theory for Vector-Valued Functions: Metric Entropy of Smooth Function Classes
Junhyung Park
Krikamol Muandet
14
6
0
09 Feb 2022
Learning Operators with Coupled Attention
Georgios Kissas
Jacob H. Seidman
Leonardo Ferreira Guilhoto
V. Preciado
George J. Pappas
P. Perdikaris
24
109
0
04 Jan 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks
Thomas O'Leary-Roseberry
Xiaosong Du
A. Chaudhuri
J. Martins
Karen E. Willcox
Omar Ghattas
30
22
0
14 Dec 2021
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
62
380
0
06 Nov 2021
Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
George Stepaniants
46
15
0
26 Aug 2021
Learning the optimal Tikhonov regularizer for inverse problems
Giovanni S. Alberti
E. De Vito
Matti Lassas
Luca Ratti
Matteo Santacesaria
20
30
0
11 Jun 2021
Choose a Transformer: Fourier or Galerkin
Shuhao Cao
39
220
0
31 May 2021
Two-layer neural networks with values in a Banach space
Yury Korolev
21
23
0
05 May 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sifan Wang
Hanwen Wang
P. Perdikaris
AI4CE
38
661
0
19 Mar 2021
Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM
Oliver R. A. Dunbar
A. Garbuno-Iñigo
T. Schneider
Andrew M. Stuart
17
58
0
24 Dec 2020
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
34
29
0
11 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
205
2,282
0
18 Oct 2020
Multipole Graph Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
15
371
0
16 Jun 2020
1