Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.01889
Cited By
Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection
5 May 2020
Seonho Park
George Adosoglou
P. Pardalos
DRL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection"
32 / 32 papers shown
Title
Unsupervised Anomaly Detection Using Diffusion Trend Analysis for Display Inspection
Eunwoo Kim
Un Yang
Cheol Lae Roh
Stefano Ermon
DiffM
58
0
0
12 Jul 2024
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
280
30,103
0
01 Mar 2022
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
117
800
0
24 Sep 2020
Deep Learning for Anomaly Detection: A Review
Guansong Pang
Chunhua Shen
LongBing Cao
Anton Van Den Hengel
184
925
0
06 Jul 2020
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
D. Song
OOD
SSL
56
945
0
28 Jun 2019
Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
Seonho Park
Seung Hyun Jung
P. Pardalos
ODL
53
15
0
27 Jun 2019
Deep Semi-Supervised Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
UQCV
56
545
0
06 Jun 2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
Daniel Moyer
Aram Galstyan
Greg Ver Steeg
49
17
0
15 Apr 2019
Information Theoretic Lower Bounds on Negative Log Likelihood
Luis A. Lastras
46
6
0
12 Apr 2019
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent Representations
Pramuditha Perera
Ramesh Nallapati
Bing Xiang
113
526
0
20 Mar 2019
Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff
Yochai Blau
T. Michaeli
71
306
0
23 Jan 2019
Do Deep Generative Models Know What They Don't Know?
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
OOD
66
757
0
22 Oct 2018
Generative Probabilistic Novelty Detection with Adversarial Autoencoders
Stanislav Pidhorskyi
Ranya Almohsen
Donald Adjeroh
Gianfranco Doretto
UQCV
45
322
0
06 Jul 2018
Deep Anomaly Detection Using Geometric Transformations
I. Golan
Ran El-Yaniv
89
607
0
28 May 2018
Understanding disentangling in
β
β
β
-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGe
DRL
65
830
0
10 Apr 2018
Anomaly Detection using One-Class Neural Networks
Raghavendra Chalapathy
A. Menon
Sanjay Chawla
UQCV
53
395
0
18 Feb 2018
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
62
1,350
0
16 Feb 2018
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRL
BDL
61
80
0
01 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
283
8,883
0
25 Aug 2017
Sharpening Jensen's Inequality
Jason Liao
Arthur Berg
45
73
0
26 Jul 2017
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GAN
BDL
66
633
0
19 May 2017
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedIm
GAN
106
2,230
0
17 Mar 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
354
4,709
0
15 Mar 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
158
3,454
0
07 Oct 2016
Conditional Image Generation with PixelCNN Decoders
Aaron van den Oord
Nal Kalchbrenner
Oriol Vinyals
L. Espeholt
Alex Graves
Koray Kavukcuoglu
VLM
209
2,513
0
16 Jun 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
246
3,216
0
15 Jun 2016
Adversarial Autoencoders
Alireza Makhzani
Jonathon Shlens
Navdeep Jaitly
Ian Goodfellow
Brendan J. Frey
GAN
86
2,224
0
18 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,318
0
06 Jun 2015
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
207
1,584
0
09 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,305
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,115
0
22 Dec 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,929
0
20 Dec 2013
1