ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03780
  4. Cited By
DADA: Differentiable Automatic Data Augmentation

DADA: Differentiable Automatic Data Augmentation

8 March 2020
Yonggang Li
Guosheng Hu
Yongtao Wang
Timothy M. Hospedales
N. Robertson
Yongxin Yang
ArXivPDFHTML

Papers citing "DADA: Differentiable Automatic Data Augmentation"

50 / 61 papers shown
Title
IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents
IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents
Eric Xue
Zeyi Huang
Yuyang Ji
Haohan Wang
83
0
0
25 Feb 2025
A Mathematics Framework of Artificial Shifted Population Risk and Its Further Understanding Related to Consistency Regularization
A Mathematics Framework of Artificial Shifted Population Risk and Its Further Understanding Related to Consistency Regularization
Xiliang Yang
Shenyang Deng
Shicong Liu
Yuanchi Suo
Wing.W.Y NG
Jianjun Zhang
40
0
0
15 Feb 2025
GenMix: Effective Data Augmentation with Generative Diffusion Model
  Image Editing
GenMix: Effective Data Augmentation with Generative Diffusion Model Image Editing
Khawar Islam
M. Zaheer
Arif Mahmood
Karthik Nandakumar
Naveed Akhtar
DiffM
85
2
0
03 Dec 2024
Test-Time Augmentation Meets Variational Bayes
Test-Time Augmentation Meets Variational Bayes
Masanari Kimura
Howard Bondell
OOD
BDL
TDI
21
0
0
19 Sep 2024
EntAugment: Entropy-Driven Adaptive Data Augmentation Framework for
  Image Classification
EntAugment: Entropy-Driven Adaptive Data Augmentation Framework for Image Classification
Suorong Yang
Furao Shen
Jian Zhao
AAML
37
1
0
10 Sep 2024
Efficient Training of Large Vision Models via Advanced Automated
  Progressive Learning
Efficient Training of Large Vision Models via Advanced Automated Progressive Learning
Changlin Li
Jiawei Zhang
Sihao Lin
Zongxin Yang
Junwei Liang
Xiaodan Liang
Xiaojun Chang
VLM
33
0
0
06 Sep 2024
Data Augmentation Policy Search for Long-Term Forecasting
Data Augmentation Policy Search for Long-Term Forecasting
Liran Nochumsohn
Omri Azencot
AI4TS
TPM
46
3
0
01 May 2024
DiffuseMix: Label-Preserving Data Augmentation with Diffusion Models
DiffuseMix: Label-Preserving Data Augmentation with Diffusion Models
Khawar Islam
Muhammad Zaigham Zaheer
Arif Mahmood
Karthik Nandakumar
DiffM
37
28
0
05 Apr 2024
Dense Vision Transformer Compression with Few Samples
Dense Vision Transformer Compression with Few Samples
Hanxiao Zhang
Yifan Zhou
Guo-Hua Wang
Jianxin Wu
ViT
VLM
39
1
0
27 Mar 2024
Automated data processing and feature engineering for deep learning and
  big data applications: a survey
Automated data processing and feature engineering for deep learning and big data applications: a survey
A. Mumuni
F. Mumuni
TPM
46
48
0
18 Mar 2024
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Haoyang Liu
Aditya Singh
Yijiang Li
Haohan Wang
AAML
ViT
39
1
0
15 Mar 2024
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
70
5
0
13 Mar 2024
Understanding the Detrimental Class-level Effects of Data Augmentation
Understanding the Detrimental Class-level Effects of Data Augmentation
Polina Kirichenko
Mark Ibrahim
Randall Balestriero
Diane Bouchacourt
Ramakrishna Vedantam
Hamed Firooz
Andrew Gordon Wilson
45
12
0
07 Dec 2023
Domain Generalization by Rejecting Extreme Augmentations
Domain Generalization by Rejecting Extreme Augmentations
Masih Aminbeidokhti
F. Guerrero-Peña
H. R. Medeiros
Thomas Dubail
Eric Granger
M. Pedersoli
ViT
45
3
0
10 Oct 2023
When to Learn What: Model-Adaptive Data Augmentation Curriculum
When to Learn What: Model-Adaptive Data Augmentation Curriculum
Chengkai Hou
Jieyu Zhang
Dinesh Manocha
35
15
0
09 Sep 2023
Distributionally Robust Cross Subject EEG Decoding
Distributionally Robust Cross Subject EEG Decoding
Tiehang Duan
Zhenyi Wang
Gianfranco Doretto
Fang Li
Cui Tao
Don Adjeroh
10
3
0
19 Aug 2023
SLACK: Stable Learning of Augmentations with Cold-start and KL
  regularization
SLACK: Stable Learning of Augmentations with Cold-start and KL regularization
Juliette Marrie
Michael Arbel
Diane Larlus
Julien Mairal
OffRL
41
4
0
16 Jun 2023
Unsupervised augmentation optimization for few-shot medical image
  segmentation
Unsupervised augmentation optimization for few-shot medical image segmentation
Quan Quan
Shang Zhao
Qingsong Yao
Heqin Zhu
S. Kevin Zhou
29
1
0
08 Jun 2023
Joint Optimization of Class-Specific Training- and Test-Time Data
  Augmentation in Segmentation
Joint Optimization of Class-Specific Training- and Test-Time Data Augmentation in Segmentation
Zeju Li
Konstantinos Kamnitsas
Qi Dou
C. Qin
Ben Glocker
21
6
0
30 May 2023
Revisiting Data Augmentation in Model Compression: An Empirical and
  Comprehensive Study
Revisiting Data Augmentation in Model Compression: An Empirical and Comprehensive Study
Muzhou Yu
Linfeng Zhang
Kaisheng Ma
23
2
0
22 May 2023
Hyperparameter Optimization through Neural Network Partitioning
Hyperparameter Optimization through Neural Network Partitioning
Bruno Mlodozeniec
M. Reisser
Christos Louizos
42
6
0
28 Apr 2023
No Free Lunch in Self Supervised Representation Learning
No Free Lunch in Self Supervised Representation Learning
Ihab Bendidi
Adrien Bardes
E. Cohen
Alexis Lamiable
Guillaume Bollot
Auguste Genovesio
OOD
52
11
0
23 Apr 2023
LA3: Efficient Label-Aware AutoAugment
LA3: Efficient Label-Aware AutoAugment
Mingjun Zhao
Sha Lu
Zixuan Wang
Xiaoli Wang
Di Niu
22
1
0
20 Apr 2023
Time Series Contrastive Learning with Information-Aware Augmentations
Time Series Contrastive Learning with Information-Aware Augmentations
Dongsheng Luo
Wei Cheng
Yingheng Wang
Dongkuan Xu
Jingchao Ni
...
Xuchao Zhang
Yanchi Liu
Yuncong Chen
Haifeng Chen
Xiang Zhang
AI4TS
26
55
0
21 Mar 2023
A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk
  Minimization
A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization
Mathieu Dagréou
Thomas Moreau
Samuel Vaiter
Pierre Ablin
39
12
0
17 Feb 2023
Tackling Data Bias in Painting Classification with Style Transfer
Tackling Data Bias in Painting Classification with Style Transfer
Mridula Vijendran
Frederick W. B. Li
Hubert P. H. Shum
33
3
0
06 Jan 2023
Dynamic Test-Time Augmentation via Differentiable Functions
Dynamic Test-Time Augmentation via Differentiable Functions
Shohei Enomoto
Monikka Roslianna Busto
Takeharu Eda
OOD
43
5
0
09 Dec 2022
LEAVES: Learning Views for Time-Series Data in Contrastive Learning
LEAVES: Learning Views for Time-Series Data in Contrastive Learning
Han Yu
Huiyuan Yang
Akane Sano
AI4TS
35
5
0
13 Oct 2022
Empirical Evaluation of Data Augmentations for Biobehavioral Time Series
  Data with Deep Learning
Empirical Evaluation of Data Augmentations for Biobehavioral Time Series Data with Deep Learning
Huiyuan Yang
Han Yu
Akane Sano
AI4TS
27
5
0
13 Oct 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
26
10
0
29 Sep 2022
Augmentation Learning for Semi-Supervised Classification
Augmentation Learning for Semi-Supervised Classification
Tim Frommknecht
Pedro Alves Zipf
Quanfu Fan
Nina Shvetsova
Hilde Kuehne
25
2
0
03 Aug 2022
A Survey of Automated Data Augmentation Algorithms for Deep
  Learning-based Image Classification Tasks
A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks
Z. Yang
Richard Sinnott
James Bailey
Qiuhong Ke
26
39
0
14 Jun 2022
Masked Autoencoders are Robust Data Augmentors
Masked Autoencoders are Robust Data Augmentors
Haohang Xu
Shuangrui Ding
Xiaopeng Zhang
H. Xiong
35
27
0
10 Jun 2022
Learning Instance-Specific Augmentations by Capturing Local Invariances
Learning Instance-Specific Augmentations by Capturing Local Invariances
Ning Miao
Tom Rainforth
Emile Mathieu
Yann Dubois
Yee Whye Teh
Adam Foster
Hyunjik Kim
40
10
0
31 May 2022
A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
  Challenges, and Opportunities
A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities
Yisheng Song
Ting-Yuan Wang
S. Mondal
J. P. Sahoo
SLR
50
344
0
13 May 2022
Automated Progressive Learning for Efficient Training of Vision
  Transformers
Automated Progressive Learning for Efficient Training of Vision Transformers
Changlin Li
Bohan Zhuang
Guangrun Wang
Xiaodan Liang
Xiaojun Chang
Yi Yang
28
46
0
28 Mar 2022
AutoGPart: Intermediate Supervision Search for Generalizable 3D Part
  Segmentation
AutoGPart: Intermediate Supervision Search for Generalizable 3D Part Segmentation
Xueyi Liu
Xiaomeng Xu
Anyi Rao
Chuang Gan
L. Yi
3DPC
24
14
0
13 Mar 2022
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
Teppei Suzuki
ViT
21
48
0
25 Feb 2022
Deep invariant networks with differentiable augmentation layers
Deep invariant networks with differentiable augmentation layers
Cédric Rommel
Thomas Moreau
Alexandre Gramfort
OOD
27
8
0
04 Feb 2022
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
SelectAugment: Hierarchical Deterministic Sample Selection for Data
  Augmentation
SelectAugment: Hierarchical Deterministic Sample Selection for Data Augmentation
Shiqi Lin
Zhizheng Zhang
Xin Li
Wenjun Zeng
Zhibo Chen
41
9
0
06 Dec 2021
DIVA: Dataset Derivative of a Learning Task
DIVA: Dataset Derivative of a Learning Task
Yonatan Dukler
Alessandro Achille
Giovanni Paolini
Avinash Ravichandran
M. Polito
Stefano Soatto
22
5
0
18 Nov 2021
Learning Augmentation Distributions using Transformed Risk Minimization
Learning Augmentation Distributions using Transformed Risk Minimization
Evangelos Chatzipantazis
Stefanos Pertigkiozoglou
Kostas Daniilidis
Yan Sun
51
15
0
16 Nov 2021
Learning Partial Equivariances from Data
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
23
28
0
19 Oct 2021
Text AutoAugment: Learning Compositional Augmentation Policy for Text
  Classification
Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification
Shuhuai Ren
Jinchao Zhang
Lei Li
Xu Sun
Jie Zhou
38
31
0
01 Sep 2021
An overview of mixing augmentation methods and augmentation strategies
An overview of mixing augmentation methods and augmentation strategies
Dominik Lewy
Jacek Mańdziuk
23
61
0
21 Jul 2021
CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG
  Signals
CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG Signals
Cédric Rommel
Thomas Moreau
Joseph Paillard
Alexandre Gramfort
19
37
0
25 Jun 2021
Rotating spiders and reflecting dogs: a class conditional approach to
  learning data augmentation distributions
Rotating spiders and reflecting dogs: a class conditional approach to learning data augmentation distributions
Scott Mahan
Henry Kvinge
T. Doster
OOD
11
3
0
07 Jun 2021
Direct Differentiable Augmentation Search
Direct Differentiable Augmentation Search
Aoming Liu
Zehao Huang
Zhiwu Huang
Naiyan Wang
33
33
0
09 Apr 2021
Scale-aware Automatic Augmentation for Object Detection
Scale-aware Automatic Augmentation for Object Detection
Yukang Chen
Yanwei Li
Tao Kong
Lu Qi
Ruihang Chu
Lei Li
Jiaya Jia
35
49
0
31 Mar 2021
12
Next