ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11887
  4. Cited By
Using a thousand optimization tasks to learn hyperparameter search
  strategies

Using a thousand optimization tasks to learn hyperparameter search strategies

27 February 2020
Luke Metz
Niru Maheswaranathan
Ruoxi Sun
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
ArXivPDFHTML

Papers citing "Using a thousand optimization tasks to learn hyperparameter search strategies"

50 / 79 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
142
10,591
0
17 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
160
42,038
0
03 Dec 2019
Leveraging Procedural Generation to Benchmark Reinforcement Learning
Leveraging Procedural Generation to Benchmark Reinforcement Learning
K. Cobbe
Christopher Hesse
Jacob Hilton
John Schulman
52
549
0
03 Dec 2019
Optimizer Benchmarking Needs to Account for Hyperparameter Tuning
Optimizer Benchmarking Needs to Account for Hyperparameter Tuning
Prabhu Teja Sivaprasad
Florian Mai
Thijs Vogels
Martin Jaggi
François Fleuret
34
12
0
25 Oct 2019
Solving Rubik's Cube with a Robot Hand
Solving Rubik's Cube with a Robot Hand
OpenAI
Ilge Akkaya
Marcin Andrychowicz
Maciek Chociej
Ma-teusz Litwin
...
Peter Welinder
Lilian Weng
Qiming Yuan
Wojciech Zaremba
Lei Zhang
ODL
53
1,215
0
16 Oct 2019
On Empirical Comparisons of Optimizers for Deep Learning
On Empirical Comparisons of Optimizers for Deep Learning
Dami Choi
Christopher J. Shallue
Zachary Nado
Jaehoon Lee
Chris J. Maddison
George E. Dahl
53
259
0
11 Oct 2019
A Large-scale Study of Representation Learning with the Visual Task
  Adaptation Benchmark
A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark
Xiaohua Zhai
J. Puigcerver
Alexander Kolesnikov
P. Ruyssen
C. Riquelme
...
Michael Tschannen
Marcin Michalski
Olivier Bousquet
Sylvain Gelly
N. Houlsby
SSL
49
432
0
01 Oct 2019
Learning search spaces for Bayesian optimization: Another view of
  hyperparameter transfer learning
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
44
96
0
27 Sep 2019
On the Variance of the Adaptive Learning Rate and Beyond
On the Variance of the Adaptive Learning Rate and Beyond
Liyuan Liu
Haoming Jiang
Pengcheng He
Weizhu Chen
Xiaodong Liu
Jianfeng Gao
Jiawei Han
ODL
115
1,894
0
08 Aug 2019
Using learned optimizers to make models robust to input noise
Using learned optimizers to make models robust to input noise
Luke Metz
Niru Maheswaranathan
Jonathon Shlens
Jascha Narain Sohl-Dickstein
E. D. Cubuk
VLM
OOD
29
26
0
08 Jun 2019
Energy and Policy Considerations for Deep Learning in NLP
Energy and Policy Considerations for Deep Learning in NLP
Emma Strubell
Ananya Ganesh
Andrew McCallum
38
2,633
0
05 Jun 2019
A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth
  Trade-Off
A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off
Yaniv Blumenfeld
D. Gilboa
Daniel Soudry
MQ
32
14
0
03 Jun 2019
Tabular Benchmarks for Joint Architecture and Hyperparameter
  Optimization
Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
Aaron Klein
Frank Hutter
21
92
0
13 May 2019
SuperGLUE: A Stickier Benchmark for General-Purpose Language
  Understanding Systems
SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems
Alex Jinpeng Wang
Yada Pruksachatkun
Nikita Nangia
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
157
2,287
0
02 May 2019
DeepOBS: A Deep Learning Optimizer Benchmark Suite
DeepOBS: A Deep Learning Optimizer Benchmark Suite
Frank Schneider
Lukas Balles
Philipp Hennig
ODL
92
71
0
13 Mar 2019
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few
  Examples
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
Eleni Triantafillou
Tyler Lixuan Zhu
Vincent Dumoulin
Pascal Lamblin
Utku Evci
...
Ross Goroshin
Carles Gelada
Kevin Swersky
Pierre-Antoine Manzagol
Hugo Larochelle
109
614
0
07 Mar 2019
NAS-Bench-101: Towards Reproducible Neural Architecture Search
NAS-Bench-101: Towards Reproducible Neural Architecture Search
Chris Ying
Aaron Klein
Esteban Real
Eric Christiansen
Kevin Patrick Murphy
Frank Hutter
39
678
0
25 Feb 2019
Obstacle Tower: A Generalization Challenge in Vision, Control, and
  Planning
Obstacle Tower: A Generalization Challenge in Vision, Control, and Planning
Arthur Juliani
Ahmed Khalifa
Vincent-Pierre Berges
Jonathan Harper
Ervin Teng
Hunter Henry
A. Crespi
Julian Togelius
Danny Lange
29
143
0
04 Feb 2019
Open-ended Learning in Symmetric Zero-sum Games
Open-ended Learning in Symmetric Zero-sum Games
David Balduzzi
M. Garnelo
Yoram Bachrach
Wojciech M. Czarnecki
Julien Perolat
Max Jaderberg
T. Graepel
35
169
0
23 Jan 2019
Bayesian Optimization in AlphaGo
Bayesian Optimization in AlphaGo
Yutian Chen
Aja Huang
Ziyun Wang
Ioannis Antonoglou
Julian Schrittwieser
David Silver
Nando de Freitas
BDL
39
113
0
17 Dec 2018
An Empirical Model of Large-Batch Training
An Empirical Model of Large-Batch Training
Sam McCandlish
Jared Kaplan
Dario Amodei
OpenAI Dota Team
54
275
0
14 Dec 2018
Quantifying Generalization in Reinforcement Learning
Quantifying Generalization in Reinforcement Learning
K. Cobbe
Oleg Klimov
Christopher Hesse
Taehoon Kim
John Schulman
OffRL
68
662
0
06 Dec 2018
Learning Multiple Defaults for Machine Learning Algorithms
Learning Multiple Defaults for Machine Learning Algorithms
Florian Pfisterer
Jan N. van Rijn
Philipp Probst
Andreas Müller
B. Bischl
27
26
0
23 Nov 2018
Measuring the Effects of Data Parallelism on Neural Network Training
Measuring the Effects of Data Parallelism on Neural Network Training
Christopher J. Shallue
Jaehoon Lee
J. Antognini
J. Mamou
J. Ketterling
Yao Wang
63
408
0
08 Nov 2018
Critical initialisation for deep signal propagation in noisy rectifier
  neural networks
Critical initialisation for deep signal propagation in noisy rectifier neural networks
Arnu Pretorius
Elan Van Biljon
Steve Kroon
Herman Kamper
26
16
0
01 Nov 2018
Understanding and correcting pathologies in the training of learned
  optimizers
Understanding and correcting pathologies in the training of learned optimizers
Luke Metz
Niru Maheswaranathan
Jeremy Nixon
C. Freeman
Jascha Narain Sohl-Dickstein
ODL
48
148
0
24 Oct 2018
DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning
DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning
A. Olsen
D. Konovalov
B. Philippa
P. Ridd
Jake Wood
...
Owen Kenny
J. Whinney
Brendan Calvert
M. R. Azghadi
Ronald D. White
28
378
0
09 Oct 2018
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
Stefan Falkner
Aaron Klein
Frank Hutter
BDL
134
1,077
0
04 Jul 2018
The Natural Language Decathlon: Multitask Learning as Question Answering
The Natural Language Decathlon: Multitask Learning as Question Answering
Bryan McCann
N. Keskar
Caiming Xiong
R. Socher
AIMat
MLLM
BDL
56
641
0
20 Jun 2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
284
353
0
14 Jun 2018
Re-evaluating Evaluation
Re-evaluating Evaluation
David Balduzzi
K. Tuyls
Julien Perolat
T. Graepel
MoMe
44
97
0
07 Jun 2018
Universal Statistics of Fisher Information in Deep Neural Networks: Mean
  Field Approach
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
Ryo Karakida
S. Akaho
S. Amari
FedML
104
142
0
04 Jun 2018
Parallel Architecture and Hyperparameter Search via Successive Halving
  and Classification
Parallel Architecture and Hyperparameter Search via Successive Halving and Classification
Manoj Kumar
George E. Dahl
Vijay Vasudevan
Mohammad Norouzi
46
25
0
25 May 2018
On the Selection of Initialization and Activation Function for Deep
  Neural Networks
On the Selection of Initialization and Activation Function for Deep Neural Networks
Soufiane Hayou
Arnaud Doucet
Judith Rousseau
ODL
33
75
0
21 May 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
570
7,080
0
20 Apr 2018
Gotta Learn Fast: A New Benchmark for Generalization in RL
Gotta Learn Fast: A New Benchmark for Generalization in RL
Alex Nichol
Vicki Pfau
Christopher Hesse
Oleg Klimov
John Schulman
VLM
OffRL
29
177
0
10 Apr 2018
Understanding Short-Horizon Bias in Stochastic Meta-Optimization
Understanding Short-Horizon Bias in Stochastic Meta-Optimization
Yuhuai Wu
Mengye Ren
Renjie Liao
Roger C. Grosse
61
137
0
06 Mar 2018
DeepMind Control Suite
DeepMind Control Suite
Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
...
A. Abdolmaleki
J. Merel
Andrew Lefrancq
Timothy Lillicrap
Martin Riedmiller
ELM
LM&Ro
BDL
97
1,116
0
02 Jan 2018
Mean Field Residual Networks: On the Edge of Chaos
Mean Field Residual Networks: On the Edge of Chaos
Greg Yang
S. Schoenholz
26
189
0
24 Dec 2017
Decoupled Weight Decay Regularization
Decoupled Weight Decay Regularization
I. Loshchilov
Frank Hutter
OffRL
84
2,112
0
14 Nov 2017
Neural Optimizer Search with Reinforcement Learning
Neural Optimizer Search with Reinforcement Learning
Irwan Bello
Barret Zoph
Vijay Vasudevan
Quoc V. Le
ODL
42
385
0
21 Sep 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
110
8,807
0
25 Aug 2017
SMASH: One-Shot Model Architecture Search through HyperNetworks
SMASH: One-Shot Model Architecture Search through HyperNetworks
Andrew Brock
Theodore Lim
J. Ritchie
Nick Weston
79
762
0
17 Aug 2017
A Downsampled Variant of ImageNet as an Alternative to the CIFAR
  datasets
A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets
P. Chrabaszcz
I. Loshchilov
Frank Hutter
SSeg
OOD
86
640
0
27 Jul 2017
On the State of the Art of Evaluation in Neural Language Models
On the State of the Art of Evaluation in Neural Language Models
Gábor Melis
Chris Dyer
Phil Blunsom
42
532
0
18 Jul 2017
Emergence of Locomotion Behaviours in Rich Environments
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
183
931
0
07 Jul 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
333
129,831
0
12 Jun 2017
Critical Hyper-Parameters: No Random, No Cry
Critical Hyper-Parameters: No Random, No Cry
Olivier Bousquet
Sylvain Gelly
Karol Kurach
O. Teytaud
Damien Vincent
21
40
0
10 Jun 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
44
1,023
0
23 May 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
111
1,340
0
19 May 2017
12
Next