ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11743
  4. Cited By
Composing Normalizing Flows for Inverse Problems

Composing Normalizing Flows for Inverse Problems

26 February 2020
Jay Whang
Erik M. Lindgren
A. Dimakis
    TPM
ArXivPDFHTML

Papers citing "Composing Normalizing Flows for Inverse Problems"

50 / 50 papers shown
Title
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Ben Liu
Zhen Qin
45
0
0
19 May 2025
Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching
Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching
Yasi Zhang
Peiyu Yu
Yaxuan Zhu
Yingshan Chang
Feng Gao
Yingnian Wu
Oscar Leong
96
8
0
29 May 2024
Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation
Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation
Elad Richardson
Yuval Alaluf
Or Patashnik
Yotam Nitzan
Yaniv Azar
Stav Shapiro
Daniel Cohen-Or
92
1,103
0
03 Aug 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
38
526
0
12 May 2020
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
  Generative Models
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
Sachit Menon
Alexandru Damian
Shijia Hu
Nikhil Ravi
Cynthia Rudin
OOD
DiffM
220
545
0
08 Mar 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
113
1,662
0
05 Dec 2019
Flow Models for Arbitrary Conditional Likelihoods
Flow Models for Arbitrary Conditional Likelihoods
Yongqian Li
Shoaib Akbar
Junier B. Oliva
OOD
AI4CE
17
39
0
13 Sep 2019
Information-Theoretic Lower Bounds for Compressive Sensing with
  Generative Models
Information-Theoretic Lower Bounds for Compressive Sensing with Generative Models
Zhaoqiang Liu
Jonathan Scarlett
56
40
0
28 Aug 2019
Probabilistic Residual Learning for Aleatoric Uncertainty in Image Restoration
Chen Zhang
Bangti Jin
UQCV
32
12
0
01 Aug 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
129
3,803
0
12 Jul 2019
Guided Image Generation with Conditional Invertible Neural Networks
Guided Image Generation with Conditional Invertible Neural Networks
Lynton Ardizzone
Carsten T. Lüth
Jakob Kruse
Carsten Rother
Ullrich Kothe
DRL
28
295
0
04 Jul 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
90
761
0
10 Jun 2019
Improving Exploration in Soft-Actor-Critic with Normalizing Flows
  Policies
Improving Exploration in Soft-Actor-Critic with Normalizing Flows Policies
Patrick Nadeem Ward
Ariella Smofsky
A. Bose
16
58
0
06 Jun 2019
Invertible generative models for inverse problems: mitigating
  representation error and dataset bias
Invertible generative models for inverse problems: mitigating representation error and dataset bias
Muhammad Asim
Max Daniels
Oscar Leong
Ali Ahmed
Paul Hand
78
149
0
28 May 2019
Block Coordinate Regularization by Denoising
Block Coordinate Regularization by Denoising
Yu Sun
Jiaming Liu
Ulugbek S. Kamilov
39
84
0
13 May 2019
Semi-Conditional Normalizing Flows for Semi-Supervised Learning
Semi-Conditional Normalizing Flows for Semi-Supervised Learning
Andrei Atanov
Alexandra Volokhova
Arsenii Ashukha
Ivan Sosnovik
Dmitry Vetrov
BDL
33
42
0
01 May 2019
Pluralistic Image Completion
Pluralistic Image Completion
Chuanxia Zheng
Tat-Jen Cham
Jianfei Cai
32
454
0
11 Mar 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
40
105
0
09 Mar 2019
Asymptotics of MAP Inference in Deep Networks
Asymptotics of MAP Inference in Deep Networks
Parthe Pandit
Mojtaba Sahraee
S. Rangan
A. Fletcher
49
21
0
01 Mar 2019
Learning about an exponential amount of conditional distributions
Learning about an exponential amount of conditional distributions
Mohamed Ishmael Belghazi
Maxime Oquab
Yann LeCun
David Lopez-Paz
BDL
SSL
26
28
0
22 Feb 2019
Flow++: Improving Flow-Based Generative Models with Variational
  Dequantization and Architecture Design
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
Jonathan Ho
Xi Chen
A. Srinivas
Yan Duan
Pieter Abbeel
DRL
33
446
0
01 Feb 2019
Uncertainty Autoencoders: Learning Compressed Representations via
  Variational Information Maximization
Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization
Aditya Grover
Stefano Ermon
15
53
0
26 Dec 2018
Invertible Residual Networks
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
65
621
0
02 Nov 2018
Deep Decoder: Concise Image Representations from Untrained
  Non-convolutional Networks
Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks
Reinhard Heckel
Paul Hand
55
284
0
02 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
184
3,110
0
09 Jul 2018
Variational Autoencoder with Arbitrary Conditioning
Variational Autoencoder with Arbitrary Conditioning
Oleg Ivanov
Michael Figurnov
Dmitry Vetrov
BDL
DRL
28
146
0
06 Jun 2018
Neural Proximal Gradient Descent for Compressive Imaging
Neural Proximal Gradient Descent for Compressive Imaging
Morteza Mardani
Qingyun Sun
Shreyas S. Vasawanala
Vardan Papyan
Hatef Monajemi
John M. Pauly
D. Donoho
55
154
0
01 Jun 2018
SUNLayer: Stable denoising with generative networks
SUNLayer: Stable denoising with generative networks
D. Mixon
Soledad Villar
43
21
0
25 Mar 2018
Solving Linear Inverse Problems Using GAN Priors: An Algorithm with
  Provable Guarantees
Solving Linear Inverse Problems Using GAN Priors: An Algorithm with Provable Guarantees
Viraj Shah
Chinmay Hegde
GAN
86
165
0
23 Feb 2018
Task-Aware Compressed Sensing with Generative Adversarial Networks
Task-Aware Compressed Sensing with Generative Adversarial Networks
Maya Kabkab
Pouya Samangouei
Rama Chellappa
GAN
48
78
0
05 Feb 2018
Generative Image Inpainting with Contextual Attention
Generative Image Inpainting with Contextual Attention
Jiahui Yu
Zhe Lin
Jimei Yang
Xiaohui Shen
Xin Lu
Thomas S. Huang
GAN
DiffM
58
2,255
0
24 Jan 2018
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
EGVM
199
11,610
0
11 Jan 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRL
BDL
60
281
0
10 Jan 2018
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
107
857
0
28 Nov 2017
Latent Constraints: Learning to Generate Conditionally from
  Unconditional Generative Models
Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models
Jesse Engel
Matthew Hoffman
Adam Roberts
DRL
55
140
0
15 Nov 2017
VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational
  Learning
VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning
Akash Srivastava
Lazar Valkov
Chris Russell
Michael U. Gutmann
Charles Sutton
SyDa
GAN
41
676
0
22 May 2017
Compressed Sensing using Generative Models
Compressed Sensing using Generative Models
Ashish Bora
A. Jalal
Eric Price
A. Dimakis
73
804
0
09 Mar 2017
Unrolled Generative Adversarial Networks
Unrolled Generative Adversarial Networks
Luke Metz
Ben Poole
David Pfau
Jascha Narain Sohl-Dickstein
GAN
75
1,002
0
07 Nov 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
74
1,805
0
15 Jun 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
328
8,999
0
10 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
157
3,670
0
26 May 2016
Context Encoders: Feature Learning by Inpainting
Context Encoders: Feature Learning by Inpainting
Deepak Pathak
Philipp Krahenbuhl
Jeff Donahue
Trevor Darrell
Alexei A. Efros
SSL
29
5,277
0
25 Apr 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
154
4,748
0
04 Jan 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
226
4,143
0
21 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
519
149,474
0
22 Dec 2014
Conditional Generative Adversarial Nets
Conditional Generative Adversarial Nets
M. Berk Mirza
Simon Osindero
GAN
SyDa
AI4CE
189
10,365
0
06 Nov 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
69
2,246
0
30 Oct 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
321
16,972
0
20 Dec 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
280
3,278
0
09 Jun 2012
Simultaneous analysis of Lasso and Dantzig selector
Simultaneous analysis of Lasso and Dantzig selector
Peter J. Bickel
Yaácov Ritov
Alexandre B. Tsybakov
265
2,527
0
07 Jan 2008
1