ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11576
  4. Cited By
NestedVAE: Isolating Common Factors via Weak Supervision

NestedVAE: Isolating Common Factors via Weak Supervision

26 February 2020
M. Vowels
Necati Cihan Camgöz
Richard Bowden
    CML
    DRL
ArXivPDFHTML

Papers citing "NestedVAE: Isolating Common Factors via Weak Supervision"

24 / 74 papers shown
Title
Fader Networks: Manipulating Images by Sliding Attributes
Fader Networks: Manipulating Images by Sliding Attributes
Guillaume Lample
Neil Zeghidour
Nicolas Usunier
Antoine Bordes
Ludovic Denoyer
MarcÁurelio Ranzato
DRL
GAN
96
545
0
01 Jun 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
113
362
0
01 Jun 2017
Controllable Invariance through Adversarial Feature Learning
Controllable Invariance through Adversarial Feature Learning
Qizhe Xie
Zihang Dai
Yulun Du
Eduard H. Hovy
Graham Neubig
OOD
78
291
0
31 May 2017
Unsupervised Learning of Disentangled Representations from Video
Unsupervised Learning of Disentangled Representations from Video
Emily L. Denton
Vighnesh Birodkar
DRL
CoGe
OOD
76
553
0
31 May 2017
Multi-Level Variational Autoencoder: Learning Disentangled
  Representations from Grouped Observations
Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations
Diane Bouchacourt
Ryota Tomioka
Sebastian Nowozin
BDL
OOD
DRL
54
312
0
24 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GAN
BDL
66
632
0
19 May 2017
Reinterpreting Importance-Weighted Autoencoders
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDL
FAtt
84
94
0
10 Apr 2017
Age Progression/Regression by Conditional Adversarial Autoencoder
Age Progression/Regression by Conditional Adversarial Autoencoder
Zhifei Zhang
Yang Song
Hairong Qi
GAN
CVBM
57
1,111
0
27 Feb 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
98
1,714
0
01 Dec 2016
Disentangling factors of variation in deep representations using
  adversarial training
Disentangling factors of variation in deep representations using adversarial training
Michaël Mathieu
Jiaqi Zhao
Pablo Sprechmann
Aditya A. Ramesh
Yann LeCun
DRL
CML
89
490
0
10 Nov 2016
Domain Separation Networks
Domain Separation Networks
Konstantinos Bousmalis
George Trigeorgis
N. Silberman
Dilip Krishnan
D. Erhan
OOD
107
1,449
0
22 Aug 2016
Tutorial on Variational Autoencoders
Tutorial on Variational Autoencoders
Carl Doersch
BDL
DRL
92
1,741
0
19 Jun 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian
  Posteriors
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
60
257
0
15 Mar 2016
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDL
DRL
95
911
0
06 Feb 2016
The Variational Fair Autoencoder
The Variational Fair Autoencoder
Christos Louizos
Kevin Swersky
Yujia Li
Max Welling
R. Zemel
DRL
192
633
0
03 Nov 2015
Domain Generalization for Object Recognition with Multi-task
  Autoencoders
Domain Generalization for Object Recognition with Multi-task Autoencoders
Muhammad Ghifary
W. Kleijn
Mengjie Zhang
David Balduzzi
ViT
OOD
67
659
0
31 Aug 2015
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
366
9,467
0
28 May 2015
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRL
BDL
91
929
0
11 Mar 2015
Deep Learning and the Information Bottleneck Principle
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
161
1,580
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
Semi-Supervised Learning with Deep Generative Models
Semi-Supervised Learning with Deep Generative Models
Diederik P. Kingma
Danilo Jimenez Rezende
S. Mohamed
Max Welling
GAN
SSL
BDL
83
2,738
0
20 Jun 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
412
16,947
0
20 Dec 2013
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
220
12,422
0
24 Jun 2012
Identifying confounders using additive noise models
Identifying confounders using additive noise models
Dominik Janzing
J. Peters
Joris Mooij
Bernhard Schölkopf
CML
88
66
0
09 May 2012
Previous
12