ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11576
  4. Cited By
NestedVAE: Isolating Common Factors via Weak Supervision

NestedVAE: Isolating Common Factors via Weak Supervision

26 February 2020
M. Vowels
Necati Cihan Camgöz
Richard Bowden
    CML
    DRL
ArXivPDFHTML

Papers citing "NestedVAE: Isolating Common Factors via Weak Supervision"

50 / 74 papers shown
Title
Differential Adjusted Parity for Learning Fair Representations
Differential Adjusted Parity for Learning Fair Representations
Bucher Sahyouni
Matthew Vowels
Liqun Chen
Simon Hadfield
FaML
128
0
0
13 Feb 2025
Symbolic Disentangled Representations for Images
Symbolic Disentangled Representations for Images
Alexandr Korchemnyi
A. Kovalev
Aleksandr I. Panov
OCL
89
0
0
31 Dec 2024
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
211
30,089
0
01 Mar 2022
Emerging Disentanglement in Auto-Encoder Based Unsupervised Image
  Content Transfer
Emerging Disentanglement in Auto-Encoder Based Unsupervised Image Content Transfer
Ori Press
Tomer Galanti
Sagie Benaim
Lior Wolf
47
48
0
14 Jan 2020
Gated Variational AutoEncoders: Incorporating Weak Supervision to
  Encourage Disentanglement
Gated Variational AutoEncoders: Incorporating Weak Supervision to Encourage Disentanglement
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CoGe
DRL
35
9
0
15 Nov 2019
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation
  Methods
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
63
814
0
06 Nov 2019
Toward Gender-Inclusive Coreference Resolution
Toward Gender-Inclusive Coreference Resolution
Yang Trista Cao
Hal Daumé
56
143
0
30 Oct 2019
Leveraging directed causal discovery to detect latent common causes
Leveraging directed causal discovery to detect latent common causes
Ciarán M. Gilligan-Lee
Chris Hart
Jonathan G. Richens
Saurabh Johri
CML
52
16
0
22 Oct 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
100
137
0
22 Oct 2019
Does Gender Matter? Towards Fairness in Dialogue Systems
Does Gender Matter? Towards Fairness in Dialogue Systems
Haochen Liu
Jamell Dacon
Wenqi Fan
Hui Liu
Zitao Liu
Jiliang Tang
114
144
0
16 Oct 2019
Robust Ordinal VAE: Employing Noisy Pairwise Comparisons for
  Disentanglement
Robust Ordinal VAE: Employing Noisy Pairwise Comparisons for Disentanglement
Junxiang Chen
Kayhan Batmanghelich
CoGe
DRL
19
9
0
14 Oct 2019
Optimal Training of Fair Predictive Models
Optimal Training of Fair Predictive Models
Razieh Nabi
Daniel Malinsky
I. Shpitser
42
14
0
09 Oct 2019
Representation Learning with Statistical Independence to Mitigate Bias
Representation Learning with Statistical Independence to Mitigate Bias
Ehsan Adeli
Qingyu Zhao
A. Pfefferbaum
E. Sullivan
Li Fei-Fei
Juan Carlos Niebles
K. Pohl
CML
FaML
OOD
50
17
0
08 Oct 2019
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
512
4,323
0
23 Aug 2019
Demystifying Inter-Class Disentanglement
Demystifying Inter-Class Disentanglement
Aviv Gabbay
Yedid Hoshen
DRL
36
56
0
27 Jun 2019
Flexibly Fair Representation Learning by Disentanglement
Flexibly Fair Representation Learning by Disentanglement
Elliot Creager
David Madras
J. Jacobsen
Marissa A. Weis
Kevin Swersky
T. Pitassi
R. Zemel
FaML
OOD
153
332
0
06 Jun 2019
Weakly Supervised Disentanglement by Pairwise Similarities
Weakly Supervised Disentanglement by Pairwise Similarities
Junxiang Chen
Kayhan Batmanghelich
CoGe
DRL
37
53
0
03 Jun 2019
On the Fairness of Disentangled Representations
On the Fairness of Disentangled Representations
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaML
DRL
64
226
0
31 May 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRL
OOD
63
201
0
24 May 2019
DRIT++: Diverse Image-to-Image Translation via Disentangled
  Representations
DRIT++: Diverse Image-to-Image Translation via Disentangled Representations
Hsin-Ying Lee
Hung-Yu Tseng
Qi Mao
Jia-Bin Huang
Yu-Ding Lu
Maneesh Kumar Singh
Ming-Hsuan Yang
DRL
74
782
0
02 May 2019
Learning Robust Representations by Projecting Superficial Statistics Out
Learning Robust Representations by Projecting Superficial Statistics Out
Haohan Wang
Zexue He
Zachary Chase Lipton
Eric Xing
OOD
61
235
0
02 Mar 2019
PuVAE: A Variational Autoencoder to Purify Adversarial Examples
PuVAE: A Variational Autoencoder to Purify Adversarial Examples
Uiwon Hwang
Jaewoo Park
Hyemi Jang
Sungroh Yoon
N. Cho
AAML
44
77
0
02 Mar 2019
Contrastive Variational Autoencoder Enhances Salient Features
Contrastive Variational Autoencoder Enhances Salient Features
Abubakar Abid
James Zou
DRL
47
64
0
12 Feb 2019
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CML
OOD
91
334
0
30 Jan 2019
Diversity in Faces
Diversity in Faces
Michele Merler
Nalini Ratha
Rogerio Feris
John R. Smith
47
183
0
29 Jan 2019
Learning Disentangled Representations with Reference-Based Variational
  Autoencoders
Learning Disentangled Representations with Reference-Based Variational Autoencoders
Adria Ruiz
Oriol Martínez
Xavier Binefa
Jakob Verbeek
OOD
CoGe
DRL
36
26
0
24 Jan 2019
Disentangling Latent Space for VAE by Label Relevant/Irrelevant
  Dimensions
Disentangling Latent Space for VAE by Label Relevant/Irrelevant Dimensions
Zhilin Zheng
Li Sun
CML
CoGe
DRL
37
48
0
22 Dec 2018
Learning Latent Subspaces in Variational Autoencoders
Learning Latent Subspaces in Variational Autoencoders
Jack Klys
Jake C. Snell
R. Zemel
SSL
DRL
111
139
0
14 Dec 2018
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
237
754
0
13 Dec 2018
Recent Advances in Autoencoder-Based Representation Learning
Recent Advances in Autoencoder-Based Representation Learning
Michael Tschannen
Olivier Bachem
Mario Lucic
OOD
SSL
DRL
64
443
0
12 Dec 2018
Rare Event Detection using Disentangled Representation Learning
Rare Event Detection using Disentangled Representation Learning
Ryuhei Hamaguchi
Ken Sakurada
Ryosuke Nakamura
DRL
40
36
0
04 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
107
1,463
0
29 Nov 2018
Robustly Disentangled Causal Mechanisms: Validating Deep Representations
  for Interventional Robustness
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CML
OOD
DRL
105
162
0
31 Oct 2018
Diverse Image-to-Image Translation via Disentangled Representations
Diverse Image-to-Image Translation via Disentangled Representations
Hsin-Ying Lee
Hung-Yu Tseng
Jia-Bin Huang
M. Singh
Ming-Hsuan Yang
DRL
57
907
0
02 Aug 2018
Dual Swap Disentangling
Dual Swap Disentangling
Zunlei Feng
Xinchao Wang
Chenglong Ke
Anxiang Zeng
Dacheng Tao
Xiuming Zhang
30
44
0
27 May 2018
Invariant Representations without Adversarial Training
Invariant Representations without Adversarial Training
Daniel Moyer
Shuyang Gao
Rob Brekelmans
Greg Ver Steeg
Aram Galstyan
OOD
49
210
0
24 May 2018
Generalizing Across Domains via Cross-Gradient Training
Generalizing Across Domains via Cross-Gradient Training
Shiv Shankar
Vihari Piratla
Soumen Chakrabarti
S. Chaudhuri
Preethi Jyothi
Sunita Sarawagi
OOD
46
513
0
28 Apr 2018
Disentangling Factors of Variation with Cycle-Consistent Variational
  Auto-Encoders
Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders
A. Jha
Saket Anand
Maneesh Kumar Singh
V. Veeravasarapu
CoGe
DRL
58
127
0
27 Apr 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGe
DRL
54
830
0
10 Apr 2018
Leveraging the Exact Likelihood of Deep Latent Variable Models
Leveraging the Exact Likelihood of Deep Latent Variable Models
Pierre-Alexandre Mattei
J. Frellsen
DRL
35
67
0
13 Feb 2018
UMAP: Uniform Manifold Approximation and Projection for Dimension
  Reduction
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes
John Healy
James Melville
148
9,383
0
09 Feb 2018
Clustering and Unsupervised Anomaly Detection with L2 Normalized Deep
  Auto-Encoder Representations
Clustering and Unsupervised Anomaly Detection with L2 Normalized Deep Auto-Encoder Representations
Çağlar Aytekin
Xingyang Ni
Francesco Cricri
Emre B. Aksu
SSL
UQCV
49
146
0
01 Feb 2018
Auxiliary Guided Autoregressive Variational Autoencoders
Auxiliary Guided Autoregressive Variational Autoencoders
Thomas Lucas
Jakob Verbeek
GAN
DRL
57
20
0
30 Nov 2017
JADE: Joint Autoencoders for Dis-Entanglement
JADE: Joint Autoencoders for Dis-Entanglement
Ershad Banijamali
Amir-Hossein Karimi
A. Wong
A. Ghodsi
CoGe
DRL
41
15
0
24 Nov 2017
Challenges in Disentangling Independent Factors of Variation
Challenges in Disentangling Independent Factors of Variation
Attila Szabó
Qiyang Hu
Tiziano Portenier
Matthias Zwicker
Paolo Favaro
DRL
CoGe
49
52
0
07 Nov 2017
Variational Inference of Disentangled Latent Concepts from Unlabeled
  Observations
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Abhishek Kumar
P. Sattigeri
Avinash Balakrishnan
BDL
DRL
74
521
0
02 Nov 2017
Fixing a Broken ELBO
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRL
BDL
55
80
0
01 Nov 2017
A Two-Step Disentanglement Method
A Two-Step Disentanglement Method
Naama Hadad
Lior Wolf
Shimon Shahar
53
80
0
01 Sep 2017
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
79
444
0
07 Jun 2017
Emergence of Invariance and Disentanglement in Deep Representations
Emergence of Invariance and Disentanglement in Deep Representations
Alessandro Achille
Stefano Soatto
OOD
DRL
82
476
0
05 Jun 2017
12
Next