ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11242
  4. Cited By
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger

Attacks Which Do Not Kill Training Make Adversarial Learning Stronger

26 February 2020
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
    AAML
ArXivPDFHTML

Papers citing "Attacks Which Do Not Kill Training Make Adversarial Learning Stronger"

49 / 99 papers shown
Title
Universum-inspired Supervised Contrastive Learning
Universum-inspired Supervised Contrastive Learning
Aiyang Han
Chuanxing Geng
Songcan Chen
SSL
29
3
0
22 Apr 2022
Adversarial Robustness through the Lens of Convolutional Filters
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
38
15
0
05 Apr 2022
CNN Filter DB: An Empirical Investigation of Trained Convolutional
  Filters
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Paul Gavrikov
J. Keuper
AAML
24
31
0
29 Mar 2022
A Survey of Robust Adversarial Training in Pattern Recognition:
  Fundamental, Theory, and Methodologies
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
49
71
0
26 Mar 2022
Self-Ensemble Adversarial Training for Improved Robustness
Self-Ensemble Adversarial Training for Improved Robustness
Hongjun Wang
Yisen Wang
OOD
AAML
13
48
0
18 Mar 2022
LAS-AT: Adversarial Training with Learnable Attack Strategy
LAS-AT: Adversarial Training with Learnable Attack Strategy
Xiaojun Jia
Yong Zhang
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
47
131
0
13 Mar 2022
A Unified Wasserstein Distributional Robustness Framework for
  Adversarial Training
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training
Tu Bui
Trung Le
Quan Hung Tran
He Zhao
Dinh Q. Phung
AAML
OOD
31
42
0
27 Feb 2022
On the Effectiveness of Adversarial Training against Backdoor Attacks
On the Effectiveness of Adversarial Training against Backdoor Attacks
Yinghua Gao
Dongxian Wu
Jingfeng Zhang
Guanhao Gan
Shutao Xia
Gang Niu
Masashi Sugiyama
AAML
32
22
0
22 Feb 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min-Bin Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
30
119
0
21 Feb 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient
  Training
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
85
46
0
20 Feb 2022
On The Empirical Effectiveness of Unrealistic Adversarial Hardening
  Against Realistic Adversarial Attacks
On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against Realistic Adversarial Attacks
Salijona Dyrmishi
Salah Ghamizi
Thibault Simonetto
Yves Le Traon
Maxime Cordy
AAML
26
16
0
07 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability
  Analysis (LSA) framework
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
25
3
0
05 Feb 2022
Can Adversarial Training Be Manipulated By Non-Robust Features?
Can Adversarial Training Be Manipulated By Non-Robust Features?
Lue Tao
Lei Feng
Hongxin Wei
Jinfeng Yi
Sheng-Jun Huang
Songcan Chen
AAML
86
16
0
31 Jan 2022
Improving Robustness by Enhancing Weak Subnets
Improving Robustness by Enhancing Weak Subnets
Yong Guo
David Stutz
Bernt Schiele
AAML
27
15
0
30 Jan 2022
Being Friends Instead of Adversaries: Deep Networks Learn from Data
  Simplified by Other Networks
Being Friends Instead of Adversaries: Deep Networks Learn from Data Simplified by Other Networks
Simone Marullo
Matteo Tiezzi
Marco Gori
S. Melacci
AAML
GAN
27
2
0
18 Dec 2021
On the Convergence and Robustness of Adversarial Training
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
197
345
0
15 Dec 2021
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial
  Robustness
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness
Konstantinos P. Panousis
S. Chatzis
Sergios Theodoridis
BDL
AAML
60
11
0
05 Dec 2021
Push Stricter to Decide Better: A Class-Conditional Feature Adaptive
  Framework for Improving Adversarial Robustness
Push Stricter to Decide Better: A Class-Conditional Feature Adaptive Framework for Improving Adversarial Robustness
Jia-Li Yin
Lehui Xie
Wanqing Zhu
Ximeng Liu
Bo-Hao Chen
TTA
AAML
27
3
0
01 Dec 2021
Subspace Adversarial Training
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
44
56
0
24 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated
  Channel Maps
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
40
17
0
09 Nov 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
24
26
0
03 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based
  Adversarial Attacks
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
26
14
0
02 Nov 2021
AugMax: Adversarial Composition of Random Augmentations for Robust
  Training
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zhangyang Wang
27
106
0
26 Oct 2021
Parameterizing Activation Functions for Adversarial Robustness
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
42
32
0
11 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust
  Overfitting
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
56
18
0
07 Oct 2021
Calibrated Adversarial Training
Calibrated Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
51
3
0
01 Oct 2021
Local Intrinsic Dimensionality Signals Adversarial Perturbations
Local Intrinsic Dimensionality Signals Adversarial Perturbations
Sandamal Weerasinghe
T. Alpcan
S. Erfani
C. Leckie
Benjamin I. P. Rubinstein
AAML
20
0
0
24 Sep 2021
Regional Adversarial Training for Better Robust Generalization
Regional Adversarial Training for Better Robust Generalization
Chuanbiao Song
Yanbo Fan
Yichen Yang
Baoyuan Wu
Yiming Li
Zhifeng Li
Kun He
AAML
OOD
13
6
0
02 Sep 2021
Understanding the Logit Distributions of Adversarially-Trained Deep
  Neural Networks
Understanding the Logit Distributions of Adversarially-Trained Deep Neural Networks
Landan Seguin
A. Ndirango
Neeli Mishra
SueYeon Chung
Tyler Lee
OOD
25
2
0
26 Aug 2021
Neural Architecture Dilation for Adversarial Robustness
Neural Architecture Dilation for Adversarial Robustness
Yanxi Li
Zhaohui Yang
Yunhe Wang
Chang Xu
AAML
38
23
0
16 Aug 2021
Imbalanced Adversarial Training with Reweighting
Imbalanced Adversarial Training with Reweighting
Wentao Wang
Han Xu
Xiaorui Liu
Yaxin Li
B. Thuraisingham
Jiliang Tang
31
16
0
28 Jul 2021
SemEval-2021 Task 11: NLPContributionGraph -- Structuring Scholarly NLP
  Contributions for a Research Knowledge Graph
SemEval-2021 Task 11: NLPContributionGraph -- Structuring Scholarly NLP Contributions for a Research Knowledge Graph
Jennifer D'Souza
Sören Auer
Ted Pedersen
46
30
0
10 Jun 2021
Exploring Misclassifications of Robust Neural Networks to Enhance
  Adversarial Attacks
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
58
0
21 May 2021
Relating Adversarially Robust Generalization to Flat Minima
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
32
65
0
09 Apr 2021
On the Robustness of Vision Transformers to Adversarial Examples
On the Robustness of Vision Transformers to Adversarial Examples
Kaleel Mahmood
Rigel Mahmood
Marten van Dijk
ViT
20
217
0
31 Mar 2021
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Fu Lee Wang
Yanghao Zhang
Yanbin Zheng
Wenjie Ruan
25
1
0
04 Mar 2021
Evaluating the Robustness of Geometry-Aware Instance-Reweighted
  Adversarial Training
Evaluating the Robustness of Geometry-Aware Instance-Reweighted Adversarial Training
Dorjan Hitaj
Giulio Pagnotta
I. Masi
L. Mancini
OOD
AAML
18
22
0
02 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Guided Interpolation for Adversarial Training
Guided Interpolation for Adversarial Training
Chen Chen
Jingfeng Zhang
Xilie Xu
Tianlei Hu
Gang Niu
Gang Chen
Masashi Sugiyama
AAML
30
10
0
15 Feb 2021
Understanding the Interaction of Adversarial Training with Noisy Labels
Understanding the Interaction of Adversarial Training with Noisy Labels
Jianing Zhu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Hongxia Yang
Mohan S. Kankanhalli
Masashi Sugiyama
AAML
27
27
0
06 Feb 2021
A Survey of Label-noise Representation Learning: Past, Present and
  Future
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
24
158
0
09 Nov 2020
Robust Pre-Training by Adversarial Contrastive Learning
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
30
226
0
26 Oct 2020
Geometry-aware Instance-reweighted Adversarial Training
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
47
269
0
05 Oct 2020
Adversarially Robust Neural Architectures
Adversarially Robust Neural Architectures
Minjing Dong
Yanxi Li
Yunhe Wang
Chang Xu
AAML
OOD
42
48
0
02 Sep 2020
Boundary thickness and robustness in learning models
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
18
37
0
09 Jul 2020
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial
  Robustness of Neural Networks
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks
Linhai Ma
Liang Liang
AAML
26
18
0
19 May 2020
The Curious Case of Adversarially Robust Models: More Data Can Help,
  Double Descend, or Hurt Generalization
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
34
69
0
25 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust
  and Standard Models
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
32
64
0
11 Feb 2020
Previous
12