Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.11242
Cited By
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
26 February 2020
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Attacks Which Do Not Kill Training Make Adversarial Learning Stronger"
50 / 99 papers shown
Title
Revisiting the Relationship between Adversarial and Clean Training: Why Clean Training Can Make Adversarial Training Better
MingWei Zhou
Xiaobing Pei
AAML
155
0
0
30 Mar 2025
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
Tejaswini Medi
Steffen Jung
M. Keuper
AAML
44
3
0
30 Oct 2024
Adversarial Robustification via Text-to-Image Diffusion Models
Daewon Choi
Jongheon Jeong
Huiwon Jang
Jinwoo Shin
DiffM
47
1
0
26 Jul 2024
Mitigating Low-Frequency Bias: Feature Recalibration and Frequency Attention Regularization for Adversarial Robustness
Kejia Zhang
Juanjuan Weng
Yuanzheng Cai
Zhiming Luo
Shaozi Li
AAML
64
0
0
04 Jul 2024
MEAT: Median-Ensemble Adversarial Training for Improving Robustness and Generalization
Zhaozhe Hu
Jia-Li Yin
Bin Chen
Luojun Lin
Bo-Hao Chen
Ximeng Liu
AAML
33
0
0
20 Jun 2024
Harmonizing Feature Maps: A Graph Convolutional Approach for Enhancing Adversarial Robustness
Kejia Zhang
Juanjuan Weng
Junwei Wu
Guoqing Yang
Shaozi Li
Zhiming Luo
AAML
49
1
0
17 Jun 2024
ADAPT to Robustify Prompt Tuning Vision Transformers
Masih Eskandar
Tooba Imtiaz
Zifeng Wang
Jennifer Dy
VPVLM
VLM
AAML
38
0
0
19 Mar 2024
Robust Overfitting Does Matter: Test-Time Adversarial Purification With FGSM
Linyu Tang
Lei Zhang
AAML
35
3
0
18 Mar 2024
Towards Adversarially Robust Dataset Distillation by Curvature Regularization
Eric Xue
Yijiang Li
Haoyang Liu
Yifan Shen
Haohan Wang
Haohan Wang
DD
61
8
0
15 Mar 2024
Rethinking Invariance Regularization in Adversarial Training to Improve Robustness-Accuracy Trade-off
Futa Waseda
Ching-Chun Chang
Isao Echizen
AAML
29
0
0
22 Feb 2024
Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective
Yue Xing
Xiaofeng Lin
Qifan Song
Yi Tian Xu
Belinda Zeng
Guang Cheng
SSL
26
0
0
26 Jan 2024
Conserve-Update-Revise to Cure Generalization and Robustness Trade-off in Adversarial Training
Shruthi Gowda
Bahram Zonooz
Elahe Arani
AAML
31
2
0
26 Jan 2024
Robust Mixture-of-Expert Training for Convolutional Neural Networks
Yihua Zhang
Ruisi Cai
Tianlong Chen
Guanhua Zhang
Huan Zhang
Pin-Yu Chen
Shiyu Chang
Zhangyang Wang
Sijia Liu
MoE
AAML
OOD
34
16
0
19 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
Towards Building More Robust Models with Frequency Bias
Qingwen Bu
Dong Huang
Heming Cui
AAML
17
10
0
19 Jul 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
27
1
0
29 Jun 2023
Group Orthogonalization Regularization For Vision Models Adaptation and Robustness
Yoav Kurtz
Noga Bar
Raja Giryes
26
0
0
16 Jun 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
40
50
0
18 May 2023
Exploiting Frequency Spectrum of Adversarial Images for General Robustness
Chun Yang Tan
K. Kawamoto
Hiroshi Kera
AAML
OOD
31
1
0
15 May 2023
Robust Neural Architecture Search
Xunyu Zhu
Jian Li
Yong-Jin Liu
Weiping Wang
AAML
23
2
0
06 Apr 2023
Beyond Empirical Risk Minimization: Local Structure Preserving Regularization for Improving Adversarial Robustness
Wei Wei
Jiahuan Zhou
Yingying Wu
AAML
15
0
0
29 Mar 2023
CAT:Collaborative Adversarial Training
Xingbin Liu
Huafeng Kuang
Xianming Lin
Yongjian Wu
Rongrong Ji
AAML
22
4
0
27 Mar 2023
PIAT: Parameter Interpolation based Adversarial Training for Image Classification
Kun He
Xin Liu
Yichen Yang
Zhou Qin
Weigao Wen
Hui Xue
J. Hopcroft
AAML
30
0
0
24 Mar 2023
Generalist: Decoupling Natural and Robust Generalization
Hongjun Wang
Yisen Wang
OOD
AAML
49
14
0
24 Mar 2023
An Extended Study of Human-like Behavior under Adversarial Training
Paul Gavrikov
J. Keuper
M. Keuper
AAML
28
9
0
22 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
44
34
0
19 Mar 2023
Less is More: Data Pruning for Faster Adversarial Training
Yize Li
Pu Zhao
X. Lin
B. Kailkhura
Ryan Goldh
AAML
15
9
0
23 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
24
208
0
09 Feb 2023
GAT: Guided Adversarial Training with Pareto-optimal Auxiliary Tasks
Salah Ghamizi
Jingfeng Zhang
Maxime Cordy
Mike Papadakis
Masashi Sugiyama
Yves Le Traon
AAML
28
2
0
06 Feb 2023
Beckman Defense
A. V. Subramanyam
OOD
AAML
40
0
0
04 Jan 2023
Confidence-aware Training of Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Seojin Kim
Jinwoo Shin
AAML
21
7
0
18 Dec 2022
Game Theoretic Mixed Experts for Combinational Adversarial Machine Learning
Ethan Rathbun
Kaleel Mahmood
Sohaib Ahmad
Caiwen Ding
Marten van Dijk
AAML
19
4
0
26 Nov 2022
Towards Robust Dataset Learning
Yihan Wu
Xinda Li
Florian Kerschbaum
Heng Huang
Hongyang R. Zhang
DD
OOD
49
10
0
19 Nov 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
28
4
0
20 Oct 2022
Scaling Adversarial Training to Large Perturbation Bounds
Sravanti Addepalli
Samyak Jain
Gaurang Sriramanan
R. Venkatesh Babu
AAML
33
22
0
18 Oct 2022
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
36
24
0
12 Oct 2022
A2: Efficient Automated Attacker for Boosting Adversarial Training
Zhuoer Xu
Guanghui Zhu
Changhua Meng
Shiwen Cui
ZhenZhe Ying
Weiqiang Wang
GU Ming
Yihua Huang
AAML
36
13
0
07 Oct 2022
Strength-Adaptive Adversarial Training
Chaojian Yu
Dawei Zhou
Li Shen
Jun Yu
Bo Han
Biwei Huang
Nannan Wang
Tongliang Liu
OOD
17
2
0
04 Oct 2022
Improving Robust Fairness via Balance Adversarial Training
Chunyu Sun
Chenye Xu
Chengyuan Yao
Siyuan Liang
Yichao Wu
Ding Liang
XiangLong Liu
Aishan Liu
23
11
0
15 Sep 2022
Attacking the Spike: On the Transferability and Security of Spiking Neural Networks to Adversarial Examples
Nuo Xu
Kaleel Mahmood
Haowen Fang
Ethan Rathbun
Caiwen Ding
Wujie Wen
AAML
29
12
0
07 Sep 2022
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Dong Huang
Qi Bu
Yuhao Qing
Haowen Pi
Sen Wang
Heming Cui
OOD
AAML
30
0
0
17 Aug 2022
Removing Batch Normalization Boosts Adversarial Training
Haotao Wang
Aston Zhang
Shuai Zheng
Xingjian Shi
Mu Li
Zhangyang Wang
40
41
0
04 Jul 2022
Boosting Factorization Machines via Saliency-Guided Mixup
Chenwang Wu
Defu Lian
Yong Ge
Min Zhou
Enhong Chen
Dacheng Tao
13
4
0
17 Jun 2022
Analysis and Extensions of Adversarial Training for Video Classification
K. A. Kinfu
René Vidal
AAML
30
13
0
16 Jun 2022
Wavelet Regularization Benefits Adversarial Training
Jun Yan
Huilin Yin
Xiaoyang Deng
Zi-qin Zhao
Wancheng Ge
Hao Zhang
Gerhard Rigoll
AAML
19
2
0
08 Jun 2022
Building Robust Ensembles via Margin Boosting
Dinghuai Zhang
Hongyang R. Zhang
Aaron Courville
Yoshua Bengio
Pradeep Ravikumar
A. Suggala
AAML
UQCV
45
15
0
07 Jun 2022
Robust Meta-learning with Sampling Noise and Label Noise via Eigen-Reptile
Dong Chen
Lingfei Wu
Siliang Tang
Xiao Yun
Bo Long
Yueting Zhuang
VLM
NoLa
28
9
0
04 Jun 2022
Attack-Agnostic Adversarial Detection
Jiaxin Cheng
Mohamed Hussein
J. Billa
Wael AbdAlmageed
AAML
26
0
0
01 Jun 2022
Superclass Adversarial Attack
Soichiro Kumano
Hiroshi Kera
T. Yamasaki
AAML
37
1
0
29 May 2022
CE-based white-box adversarial attacks will not work using super-fitting
Youhuan Yang
Lei Sun
Leyu Dai
Song Guo
Xiuqing Mao
Xiaoqin Wang
Bayi Xu
AAML
34
0
0
04 May 2022
1
2
Next