ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.02845
18
2

Robust Neural Architecture Search

6 April 2023
Xunyu Zhu
Jian Li
Yong-Jin Liu
Weiping Wang
    AAML
ArXivPDFHTML
Abstract

Neural Architectures Search (NAS) becomes more and more popular over these years. However, NAS-generated models tends to suffer greater vulnerability to various malicious attacks. Lots of robust NAS methods leverage adversarial training to enhance the robustness of NAS-generated models, however, they neglected the nature accuracy of NAS-generated models. In our paper, we propose a novel NAS method, Robust Neural Architecture Search (RNAS). To design a regularization term to balance accuracy and robustness, RNAS generates architectures with both high accuracy and good robustness. To reduce search cost, we further propose to use noise examples instead adversarial examples as input to search architectures. Extensive experiments show that RNAS achieves state-of-the-art (SOTA) performance on both image classification and adversarial attacks, which illustrates the proposed RNAS achieves a good tradeoff between robustness and accuracy.

View on arXiv
Comments on this paper