ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08871
  4. Cited By
Fast Differentiable Sorting and Ranking

Fast Differentiable Sorting and Ranking

20 February 2020
Mathieu Blondel
O. Teboul
Quentin Berthet
Josip Djolonga
ArXivPDFHTML

Papers citing "Fast Differentiable Sorting and Ranking"

23 / 23 papers shown
Title
Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling
Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling
Guillem Capellera
Antonio Rubio
Luis Ferraz
Antonio Agudo
94
1
0
24 Mar 2025
Learning Cascade Ranking as One Network
Learning Cascade Ranking as One Network
Yunli Wang
Zhenru Zhang
Ziyi Wang
Zhiyong Yang
Yunshui Li
Jian Yang
Shiyang Wen
Peng Jiang
Kun Gai
77
0
0
12 Mar 2025
Preserving clusters and correlations: a dimensionality reduction method for exceptionally high global structure preservation
Preserving clusters and correlations: a dimensionality reduction method for exceptionally high global structure preservation
Jacob Gildenblat
Jens Pahnke
355
1
0
10 Mar 2025
Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
Guangkun Nie
Gongzheng Tang
Shenda Hong
113
0
0
20 Nov 2024
Conformal Risk Minimization with Variance Reduction
Conformal Risk Minimization with Variance Reduction
Sima Noorani
Orlando Romero
Nicolò Dal Fabbro
Hamed Hassani
George Pappas
202
3
0
03 Nov 2024
Soft Condorcet Optimization for Ranking of General Agents
Soft Condorcet Optimization for Ranking of General Agents
Marc Lanctot
Kate Larson
Michael Kaisers
Quentin Berthet
I. Gemp
Manfred Diaz
Roberto-Rafael Maura-Rivero
Yoram Bachrach
Anna Koop
Doina Precup
187
0
0
31 Oct 2024
CHAMP: Conformalized 3D Human Multi-Hypothesis Pose Estimators
CHAMP: Conformalized 3D Human Multi-Hypothesis Pose Estimators
Harry Zhang
Luca Carlone
3DH
199
1
0
27 May 2024
Structured Prediction with Projection Oracles
Structured Prediction with Projection Oracles
Mathieu Blondel
68
33
0
24 Oct 2019
Differentiable Ranks and Sorting using Optimal Transport
Differentiable Ranks and Sorting using Optimal Transport
Marco Cuturi
O. Teboul
Jean-Philippe Vert
OT
69
158
0
28 May 2019
Stochastic Optimization of Sorting Networks via Continuous Relaxations
Stochastic Optimization of Sorting Networks via Continuous Relaxations
Aditya Grover
Eric Wang
Aaron Zweig
Stefano Ermon
53
173
0
21 Mar 2019
Learning with Fenchel-Young Losses
Learning with Fenchel-Young Losses
Mathieu Blondel
André F. T. Martins
Vlad Niculae
131
133
0
08 Jan 2019
A Structured Prediction Approach for Label Ranking
A Structured Prediction Approach for Label Ranking
Anna Korba
Alexandre Garcia
Florence dÁlché-Buc
42
37
0
06 Jul 2018
Learning Classifiers with Fenchel-Young Losses: Generalized Entropies,
  Margins, and Algorithms
Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms
Mathieu Blondel
André F. T. Martins
Vlad Niculae
FedML
27
39
0
24 May 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
195
2,143
0
01 Mar 2018
SparseMAP: Differentiable Sparse Structured Inference
SparseMAP: Differentiable Sparse Structured Inference
Vlad Niculae
André F. T. Martins
Mathieu Blondel
Claire Cardie
43
122
0
12 Feb 2018
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
413
18,334
0
27 May 2016
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label
  Classification
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification
André F. T. Martins
Ramón Fernández Astudillo
164
719
0
05 Feb 2016
Loss Functions for Top-k Error: Analysis and Insights
Loss Functions for Top-k Error: Analysis and Insights
Maksim Lapin
Matthias Hein
Bernt Schiele
139
96
0
01 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.5K
149,842
0
22 Dec 2014
Bandit Online Optimization Over the Permutahedron
Bandit Online Optimization Over the Permutahedron
Nir Ailon
Kohei Hatano
Eiji Takimoto
53
21
0
05 Dec 2013
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
190
4,251
0
04 Jun 2013
Learning with Submodular Functions: A Convex Optimization Perspective
Learning with Submodular Functions: A Convex Optimization Perspective
Francis R. Bach
127
477
0
28 Nov 2011
Ranking via Sinkhorn Propagation
Ranking via Sinkhorn Propagation
Ryan P. Adams
R. Zemel
88
147
0
09 Jun 2011
1