53
21

Bandit Online Optimization Over the Permutahedron

Abstract

The permutahedron is the convex polytope with vertex set consisting of the vectors (π(1),,π(n))(\pi(1),\dots, \pi(n)) for all permutations (bijections) π\pi over {1,,n}\{1,\dots, n\}. We study a bandit game in which, at each step tt, an adversary chooses a hidden weight weight vector sts_t, a player chooses a vertex πt\pi_t of the permutahedron and suffers an observed loss of i=1nπ(i)st(i)\sum_{i=1}^n \pi(i) s_t(i). A previous algorithm CombBand of Cesa-Bianchi et al (2009) guarantees a regret of O(nTlogn)O(n\sqrt{T \log n}) for a time horizon of TT. Unfortunately, CombBand requires at each step an nn-by-nn matrix permanent approximation to within improved accuracy as TT grows, resulting in a total running time that is super linear in TT, making it impractical for large time horizons. We provide an algorithm of regret O(n3/2T)O(n^{3/2}\sqrt{T}) with total time complexity O(n3T)O(n^3T). The ideas are a combination of CombBand and a recent algorithm by Ailon (2013) for online optimization over the permutahedron in the full information setting. The technical core is a bound on the variance of the Plackett-Luce noisy sorting process's "pseudo loss". The bound is obtained by establishing positive semi-definiteness of a family of 3-by-3 matrices generated from rational functions of exponentials of 3 parameters.

View on arXiv
Comments on this paper