ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06715
  4. Cited By
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning

BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning

17 February 2020
Yeming Wen
Dustin Tran
Jimmy Ba
    OOD
    FedML
    UQCV
ArXivPDFHTML

Papers citing "BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning"

50 / 115 papers shown
Title
Packed-Ensembles for Efficient Uncertainty Estimation
Packed-Ensembles for Efficient Uncertainty Estimation
Olivier Laurent
Adrien Lafage
Enzo Tartaglione
Geoffrey Daniel
Jean-Marc Martinez
Andrei Bursuc
Gianni Franchi
OODD
44
32
0
17 Oct 2022
Multi-CLS BERT: An Efficient Alternative to Traditional Ensembling
Multi-CLS BERT: An Efficient Alternative to Traditional Ensembling
Haw-Shiuan Chang
Ruei-Yao Sun
Kathryn Ricci
Andrew McCallum
43
14
0
10 Oct 2022
Uncertainty Estimation for Multi-view Data: The Power of Seeing the
  Whole Picture
Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture
M. Jung
He Zhao
Joanna Dipnall
Belinda Gabbe
Lan Du
UQCV
EDL
57
12
0
06 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent
  Kernel
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
26
4
0
30 Sep 2022
TEDL: A Two-stage Evidential Deep Learning Method for Classification
  Uncertainty Quantification
TEDL: A Two-stage Evidential Deep Learning Method for Classification Uncertainty Quantification
Xue Li
Wei Shen
Denis Xavier Charles
UQCV
EDL
30
3
0
12 Sep 2022
Latent Discriminant deterministic Uncertainty
Latent Discriminant deterministic Uncertainty
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
David Filliat
UQCV
24
18
0
20 Jul 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
54
71
0
19 Jul 2022
Incremental Task Learning with Incremental Rank Updates
Incremental Task Learning with Incremental Rank Updates
Rakib Hyder
Ken Shao
Boyu Hou
P. Markopoulos
Ashley Prater-Bennette
M. Salman Asif
CLL
16
13
0
19 Jul 2022
Instance-Aware Observer Network for Out-of-Distribution Object
  Segmentation
Instance-Aware Observer Network for Out-of-Distribution Object Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
39
1
0
18 Jul 2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
27
30
0
13 Jul 2022
Test-Time Adaptation via Self-Training with Nearest Neighbor Information
Test-Time Adaptation via Self-Training with Nearest Neighbor Information
M-U Jang
Sae-Young Chung
Hye Won Chung
OOD
TTA
38
56
0
08 Jul 2022
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and
  Out Distribution Robustness
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto
Harry Yang
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
27
34
0
29 Jun 2022
Transfer learning for ensembles: reducing computation time and keeping
  the diversity
Transfer learning for ensembles: reducing computation time and keeping the diversity
Ilya Shashkov
Nikita Balabin
Evgeny Burnaev
Alexey Zaytsev
14
1
0
27 Jun 2022
Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
  Detection
Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution Detection
Xiongjie Chen
Yunpeng Li
Yongxin Yang
UQCV
OODD
21
3
0
26 Jun 2022
Functional Ensemble Distillation
Functional Ensemble Distillation
Coby Penso
Idan Achituve
Ethan Fetaya
FedML
33
2
0
05 Jun 2022
LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object
  Detection
LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object Detection
Matthew A. Pitropov
Chengjie Huang
Vahdat Abdelzad
Krzysztof Czarnecki
Steven Waslander
3DPC
19
3
0
01 Jun 2022
Towards efficient feature sharing in MIMO architectures
Towards efficient feature sharing in MIMO architectures
Rémy Sun
Alexandre Ramé
Clément Masson
Nicolas Thome
Matthieu Cord
70
6
0
20 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
Parameter-efficient Model Adaptation for Vision Transformers
Parameter-efficient Model Adaptation for Vision Transformers
Xuehai He
Chunyuan Li
Pengchuan Zhang
Jianwei Yang
X. Wang
28
84
0
29 Mar 2022
Self-Distribution Distillation: Efficient Uncertainty Estimation
Self-Distribution Distillation: Efficient Uncertainty Estimation
Yassir Fathullah
Mark J. F. Gales
UQCV
14
11
0
15 Mar 2022
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for
  multiple uncertainty types and tasks
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Ángel Tena
Rémi Kazmierczak
Séverine Dubuisson
Emanuel Aldea
David Filliat
UQCV
23
28
0
02 Mar 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
38
59
0
14 Feb 2022
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Deebul Nair
Nico Hochgeschwender
Miguel A. Olivares-Mendez
OOD
22
7
0
03 Feb 2022
Representation Topology Divergence: A Method for Comparing Neural
  Network Representations
Representation Topology Divergence: A Method for Comparing Neural Network Representations
S. Barannikov
I. Trofimov
Nikita Balabin
Evgeny Burnaev
3DPC
32
45
0
31 Dec 2021
Improving the performance of bagging ensembles for data streams through
  mini-batching
Improving the performance of bagging ensembles for data streams through mini-batching
G. Cassales
Heitor Murilo Gomes
Albert Bifet
Bernhard Pfahringer
H. Senger
AI4TS
16
12
0
18 Dec 2021
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Shiye Lei
Zhuozhuo Tu
Leszek Rutkowski
Feng Zhou
Li Shen
Fengxiang He
Dacheng Tao
BDL
23
2
0
12 Dec 2021
On the Effectiveness of Neural Ensembles for Image Classification with
  Small Datasets
On the Effectiveness of Neural Ensembles for Image Classification with Small Datasets
Lorenzo Brigato
Luca Iocchi
UQCV
24
0
0
29 Nov 2021
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
Arthur Douillard
Alexandre Ramé
Guillaume Couairon
Matthieu Cord
CLL
30
295
0
22 Nov 2021
Diversity Matters When Learning From Ensembles
Diversity Matters When Learning From Ensembles
G. Nam
Jongmin Yoon
Yoonho Lee
Juho Lee
UQCV
FedML
VLM
40
36
0
27 Oct 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node
  Classification
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
36
80
0
26 Oct 2021
No One Representation to Rule Them All: Overlapping Features of Training
  Methods
No One Representation to Rule Them All: Overlapping Features of Training Methods
Raphael Gontijo-Lopes
Yann N. Dauphin
E. D. Cubuk
20
60
0
20 Oct 2021
The Role of Permutation Invariance in Linear Mode Connectivity of Neural
  Networks
The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks
R. Entezari
Hanie Sedghi
O. Saukh
Behnam Neyshabur
MoMe
37
215
0
12 Oct 2021
DEBOSH: Deep Bayesian Shape Optimization
DEBOSH: Deep Bayesian Shape Optimization
N. Durasov
Artem Lukoyanov
Jonathan Donier
Pascal Fua
UQCV
AI4CE
38
15
0
28 Sep 2021
Lifelong Infinite Mixture Model Based on Knowledge-Driven Dirichlet
  Process
Lifelong Infinite Mixture Model Based on Knowledge-Driven Dirichlet Process
Fei Ye
A. Bors
CLL
13
18
0
25 Aug 2021
Leveraging Uncertainty for Improved Static Malware Detection Under
  Extreme False Positive Constraints
Leveraging Uncertainty for Improved Static Malware Detection Under Extreme False Positive Constraints
A. Nguyen
Edward Raff
Charles K. Nicholas
James Holt
33
21
0
09 Aug 2021
Robust Semantic Segmentation with Superpixel-Mix
Robust Semantic Segmentation with Superpixel-Mix
Gianni Franchi
Nacim Belkhir
Mai Lan Ha
Yufei Hu
Andrei Bursuc
V. Blanz
Angela Yao
UQCV
33
22
0
02 Aug 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
Deep Ensembling with No Overhead for either Training or Testing: The
  All-Round Blessings of Dynamic Sparsity
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
Shiwei Liu
Tianlong Chen
Zahra Atashgahi
Xiaohan Chen
Ghada Sokar
Elena Mocanu
Mykola Pechenizkiy
Zhangyang Wang
D. Mocanu
OOD
28
49
0
28 Jun 2021
Repulsive Deep Ensembles are Bayesian
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
51
93
0
22 Jun 2021
Deep Learning Through the Lens of Example Difficulty
Deep Learning Through the Lens of Example Difficulty
R. Baldock
Hartmut Maennel
Behnam Neyshabur
44
155
0
17 Jun 2021
Compacter: Efficient Low-Rank Hypercomplex Adapter Layers
Compacter: Efficient Low-Rank Hypercomplex Adapter Layers
Rabeeh Karimi Mahabadi
James Henderson
Sebastian Ruder
MoE
46
467
0
08 Jun 2021
Orthogonal Ensemble Networks for Biomedical Image Segmentation
Orthogonal Ensemble Networks for Biomedical Image Segmentation
Agostina J. Larrazabal
Cesar E. Martínez
Jose Dolz
Enzo Ferrante
UQCV
18
22
0
22 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Efficient Weight factorization for Multilingual Speech Recognition
Efficient Weight factorization for Multilingual Speech Recognition
Ngoc-Quan Pham
Tuan-Nam Nguyen
S. Stueker
A. Waibel
40
19
0
07 May 2021
Structured Ensembles: an Approach to Reduce the Memory Footprint of
  Ensemble Methods
Structured Ensembles: an Approach to Reduce the Memory Footprint of Ensemble Methods
Jary Pomponi
Simone Scardapane
A. Uncini
UQCV
41
7
0
06 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
74
17
0
23 Apr 2021
Towards Lifelong Learning of End-to-end ASR
Towards Lifelong Learning of End-to-end ASR
Heng-Jui Chang
Hung-yi Lee
Lin-Shan Lee
KELM
CLL
35
34
0
04 Apr 2021
Accurate and Reliable Forecasting using Stochastic Differential
  Equations
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
32
1
0
28 Mar 2021
Efficient Feature Transformations for Discriminative and Generative
  Continual Learning
Efficient Feature Transformations for Discriminative and Generative Continual Learning
Vinay K. Verma
Kevin J Liang
Nikhil Mehta
Piyush Rai
Lawrence Carin
CLL
38
76
0
25 Mar 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip H. S. Torr
Y. Gal
UD
UQCV
PER
BDL
24
145
0
23 Feb 2021
Previous
123
Next