ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.05001
  4. Cited By
Simulation Assisted Likelihood-free Anomaly Detection

Simulation Assisted Likelihood-free Anomaly Detection

14 January 2020
Anders Andreassen
Benjamin Nachman
David Shih
ArXivPDFHTML

Papers citing "Simulation Assisted Likelihood-free Anomaly Detection"

17 / 17 papers shown
Title
Convolutional L2LFlows: Generating Accurate Showers in Highly Granular
  Calorimeters Using Convolutional Normalizing Flows
Convolutional L2LFlows: Generating Accurate Showers in Highly Granular Calorimeters Using Convolutional Normalizing Flows
Thorsten Buss
F. Gaede
Gregor Kasieczka
Claudius Krause
David Shih
AI4CE
41
6
0
30 May 2024
CURTAINs Flows For Flows: Constructing Unobserved Regions with Maximum
  Likelihood Estimation
CURTAINs Flows For Flows: Constructing Unobserved Regions with Maximum Likelihood Estimation
Debasish Sengupta
Samuel Klein
J. A. Raine
T. Golling
OOD
29
27
0
08 May 2023
Unravelling physics beyond the standard model with classical and quantum
  anomaly detection
Unravelling physics beyond the standard model with classical and quantum anomaly detection
Julian Schuhmacher
Laura Boggia
Vasilis Belis
E. Puljak
Michele Grossi
M. Pierini
S. Vallecorsa
F. Tacchino
Panagiotis Kl Barkoutsos
I. Tavernelli
23
26
0
25 Jan 2023
Anomalies, Representations, and Self-Supervision
Anomalies, Representations, and Self-Supervision
B. Dillon
Luigi Favaro
Friedrich Feiden
Tanmoy Modak
Tilman Plehn
39
9
0
11 Jan 2023
Resonant Anomaly Detection with Multiple Reference Datasets
Resonant Anomaly Detection with Multiple Reference Datasets
Mayee F. Chen
Benjamin Nachman
Frederic Sala
35
5
0
20 Dec 2022
Flows for Flows: Training Normalizing Flows Between Arbitrary
  Distributions with Maximum Likelihood Estimation
Flows for Flows: Training Normalizing Flows Between Arbitrary Distributions with Maximum Likelihood Estimation
Samuel Klein
J. A. Raine
T. Golling
TPM
36
10
0
04 Nov 2022
Learning new physics efficiently with nonparametric methods
Learning new physics efficiently with nonparametric methods
Marco Letizia
Gianvito Losapio
Marco Rando
Gaia Grosso
A. Wulzer
M. Pierini
M. Zanetti
Lorenzo Rosasco
OOD
31
31
0
05 Apr 2022
Leveraging universality of jet taggers through transfer learning
Leveraging universality of jet taggers through transfer learning
F. Dreyer
Radoslaw Grabarczyk
P. Monni
15
17
0
11 Mar 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
49
113
0
07 Dec 2021
Online-compatible Unsupervised Non-resonant Anomaly Detection
Online-compatible Unsupervised Non-resonant Anomaly Detection
Vinicius Mikuni
Benjamin Nachman
David Shih
34
35
0
11 Nov 2021
Challenges for Unsupervised Anomaly Detection in Particle Physics
Challenges for Unsupervised Anomaly Detection in Particle Physics
Katherine Fraser
S. Homiller
Rashmish K. Mishra
B. Ostdiek
M. Schwartz
DRL
34
43
0
13 Oct 2021
Better Latent Spaces for Better Autoencoders
Better Latent Spaces for Better Autoencoders
B. Dillon
Tilman Plehn
C. Sauer
P. Sorrenson
BDL
DRL
34
55
0
16 Apr 2021
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
J. Collins
P. Martín-Ramiro
Benjamin Nachman
David Shih
34
44
0
05 Apr 2021
Bump Hunting in Latent Space
Bump Hunting in Latent Space
Blaž Bortolato
B. Dillon
J. Kamenik
Aleks Smolkovič
DRL
39
43
0
11 Mar 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
39
178
0
02 Feb 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
37
33
0
18 Jan 2021
GPU coprocessors as a service for deep learning inference in high energy
  physics
GPU coprocessors as a service for deep learning inference in high energy physics
J. Krupa
Kelvin Lin
M. Acosta Flechas
Jack T. Dinsmore
Javier Mauricio Duarte
...
K. Pedro
D. Rankin
Natchanon Suaysom
Matthew Trahms
N. Tran
BDL
3DV
20
32
0
20 Jul 2020
1