Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.08324
Cited By
Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation
18 December 2019
Tianhong Dai
Kai Arulkumaran
Tamara Gerbert
Samyakh Tukra
Feryal M. P. Behbahani
Anil Anthony Bharath
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation"
50 / 76 papers shown
Title
Counterfactual State Explanations for Reinforcement Learning Agents via Generative Deep Learning
Matthew Lyle Olson
Roli Khanna
Lawrence Neal
Fuxin Li
Weng-Keen Wong
CML
51
71
0
29 Jan 2021
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
194
2,023
0
16 Apr 2020
How Do You Act? An Empirical Study to Understand Behavior of Deep Reinforcement Learning Agents
Richard Meyes
Moritz Schneider
Tobias Meisen
50
2
0
07 Apr 2020
Explain Your Move: Understanding Agent Actions Using Specific and Relevant Feature Attribution
Nikaash Puri
Sukriti Verma
Piyush B. Gupta
Dhruv Kayastha
Shripad Deshmukh
Balaji Krishnamurthy
Sameer Singh
FAtt
AAML
31
76
0
23 Dec 2019
Interestingness Elements for Explainable Reinforcement Learning: Understanding Agents' Capabilities and Limitations
Pedro Sequeira
Melinda Gervasio
31
104
0
19 Dec 2019
Dota 2 with Large Scale Deep Reinforcement Learning
OpenAI OpenAI
:
Christopher Berner
Greg Brockman
Brooke Chan
...
Szymon Sidor
Ilya Sutskever
Jie Tang
Filip Wolski
Susan Zhang
GNN
VLM
CLL
AI4CE
LRM
108
1,811
0
13 Dec 2019
Exploratory Not Explanatory: Counterfactual Analysis of Saliency Maps for Deep Reinforcement Learning
Akanksha Atrey
Kaleigh Clary
David D. Jensen
FAtt
LRM
52
91
0
09 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
310
42,038
0
03 Dec 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
102
6,211
0
22 Oct 2019
DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning
Theo Jaunet
Romain Vuillemot
Christian Wolf
HAI
86
36
0
06 Sep 2019
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
56
307
0
04 Jul 2019
Finding and Visualizing Weaknesses of Deep Reinforcement Learning Agents
Christian Rupprecht
Cyril Ibrahim
C. Pal
51
32
0
02 Apr 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
123
3,399
0
28 Mar 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
78
1,005
0
26 Feb 2019
Investigating Generalisation in Continuous Deep Reinforcement Learning
Chenyang Zhao
Olivier Sigaud
F. Stulp
Timothy M. Hospedales
OffRL
43
48
0
19 Feb 2019
Are All Layers Created Equal?
Chiyuan Zhang
Samy Bengio
Y. Singer
58
140
0
06 Feb 2019
Analyzing and Improving Representations with the Soft Nearest Neighbor Loss
Nicholas Frosst
Nicolas Papernot
Geoffrey E. Hinton
41
159
0
05 Feb 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
70
319
0
29 Jan 2019
An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents
F. Such
Vashisht Madhavan
Rosanne Liu
Rui Wang
Pablo Samuel Castro
...
Jiale Zhi
Ludwig Schubert
Marc G. Bellemare
Jeff Clune
Joel Lehman
OffRL
45
54
0
17 Dec 2018
Measuring and Characterizing Generalization in Deep Reinforcement Learning
Sam Witty
Jun Ki Lee
Emma Tosch
Akanksha Atrey
Michael Littman
David D. Jensen
OffRL
38
60
0
07 Dec 2018
Quantifying Generalization in Reinforcement Learning
K. Cobbe
Oleg Klimov
Christopher Hesse
Taehoon Kim
John Schulman
OffRL
75
662
0
06 Dec 2018
Rigorous Agent Evaluation: An Adversarial Approach to Uncover Catastrophic Failures
Junhui Yin
Jiayan Qiu
Csaba Szepesvári
Siqing Zhang
Avraham Ruderman
Jiyang Xie
Krishnamurthy Dvijotham
Zhanyu Ma
N. Heess
Pushmeet Kohli
AAML
60
80
0
04 Dec 2018
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRL
AI4CE
123
1,242
0
30 Nov 2018
A Closer Look at Deep Policy Gradients
Andrew Ilyas
Logan Engstrom
Shibani Santurkar
Dimitris Tsipras
Firdaus Janoos
Larry Rudolph
Aleksander Madry
51
50
0
06 Nov 2018
Assessing Generalization in Deep Reinforcement Learning
Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krahenbuhl
V. Koltun
D. Song
OffRL
95
235
0
29 Oct 2018
Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience
Yevgen Chebotar
Ankur Handa
Viktor Makoviychuk
Miles Macklin
J. Issac
Nathan D. Ratliff
Dieter Fox
70
503
0
12 Oct 2018
Learning Dexterous In-Hand Manipulation
OpenAI OpenAI
Marcin Andrychowicz
Bowen Baker
Maciek Chociej
Rafal Jozefowicz
...
Szymon Sidor
Joshua Tobin
Peter Welinder
Lilian Weng
Wojciech Zaremba
95
1,865
0
01 Aug 2018
A Dissection of Overfitting and Generalization in Continuous Reinforcement Learning
Amy Zhang
Nicolas Ballas
Joelle Pineau
CLL
OffRL
70
177
0
20 Jun 2018
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research
Matthias Plappert
Marcin Andrychowicz
Alex Ray
Bob McGrew
Bowen Baker
...
Joshua Tobin
Maciek Chociej
Peter Welinder
Vikash Kumar
Wojciech Zaremba
59
562
0
26 Feb 2018
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes
John Healy
James Melville
146
9,312
0
09 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
101
3,922
0
06 Feb 2018
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
89
683
0
02 Nov 2017
Visualizing and Understanding Atari Agents
S. Greydanus
Anurag Koul
Jonathan Dodge
Alan Fern
FAtt
98
345
0
31 Oct 2017
Sim-to-Real Transfer of Robotic Control with Dynamics Randomization
Xue Bin Peng
Marcin Andrychowicz
Wojciech Zaremba
Pieter Abbeel
93
1,355
0
18 Oct 2017
Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping
Konstantinos Bousmalis
A. Irpan
Paul Wohlhart
Yunfei Bai
Matthew Kelcey
...
Julian Ibarz
P. Pastor
K. Konolige
Sergey Levine
Vincent Vanhoucke
OOD
71
654
0
22 Sep 2017
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
106
2,792
0
19 Aug 2017
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
259
18,685
0
20 Jul 2017
Transferring End-to-End Visuomotor Control from Simulation to Real World for a Multi-Stage Task
Stephen James
Andrew J. Davison
Edward Johns
194
275
0
07 Jul 2017
Hindsight Experience Replay
Marcin Andrychowicz
Dwight Crow
Alex Ray
Jonas Schneider
Rachel Fong
Peter Welinder
Bob McGrew
Joshua Tobin
Pieter Abbeel
Wojciech Zaremba
OffRL
233
2,307
0
05 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
241
11,962
0
19 Jun 2017
An Entropy-based Pruning Method for CNN Compression
Jian-Hao Luo
Jianxin Wu
32
180
0
19 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
690
21,613
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
141
3,848
0
10 Apr 2017
Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World
Joshua Tobin
Rachel Fong
Alex Ray
Jonas Schneider
Wojciech Zaremba
Pieter Abbeel
191
2,948
0
20 Mar 2017
Robust Adversarial Reinforcement Learning
Lerrel Pinto
James Davidson
Rahul Sukthankar
Abhinav Gupta
OOD
83
848
0
08 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
147
5,920
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
359
3,742
0
28 Feb 2017
Investigating the influence of noise and distractors on the interpretation of neural networks
Pieter-Jan Kindermans
Kristof T. Schütt
K. Müller
Sven Dähne
FAtt
49
125
0
22 Nov 2016
CAD2RL: Real Single-Image Flight without a Single Real Image
Fereshteh Sadeghi
Sergey Levine
SSL
295
814
0
13 Nov 2016
Sim-to-Real Robot Learning from Pixels with Progressive Nets
Andrei A. Rusu
Matej Vecerík
Thomas Rothörl
N. Heess
Razvan Pascanu
R. Hadsell
70
532
0
13 Oct 2016
1
2
Next