99
237

Assessing Generalization in Deep Reinforcement Learning

Abstract

Deep reinforcement learning (RL) has achieved breakthrough results on many tasks, but agents often fail to generalize beyond the environment they were trained in. As a result, deep RL algorithms that promote generalization are receiving increasing attention. However, works in this area use a wide variety of tasks and experimental setups for evaluation. The literature lacks a controlled assessment of the merits of different generalization schemes. Our aim is to catalyze community-wide progress on generalization in deep RL. To this end, we present a benchmark and experimental protocol, and conduct a systematic empirical study. Our framework contains a diverse set of environments, our methodology covers both in-distribution and out-of-distribution generalization, and our evaluation includes deep RL algorithms that specifically tackle generalization. Our key finding is that `vanilla' deep RL algorithms generalize better than specialized schemes that were proposed specifically to tackle generalization.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.