ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.05651
  4. Cited By
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution
  Detection
v1v2v3 (latest)

Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection

11 December 2019
Erik A. Daxberger
José Miguel Hernández-Lobato
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection"

41 / 41 papers shown
Title
Can We Ignore Labels In Out of Distribution Detection?
Can We Ignore Labels In Out of Distribution Detection?
Hong Yang
Qi Yu
Travis Desel
OODD
72
0
0
20 Apr 2025
Bayesian generative models can flag performance loss, bias, and out-of-distribution image content
Bayesian generative models can flag performance loss, bias, and out-of-distribution image content
Miguel López-Pérez
M. Miani
Valery Naranjo
Søren Hauberg
Aasa Feragen
OODMedIm
132
0
0
21 Mar 2025
Generative Uncertainty in Diffusion Models
Generative Uncertainty in Diffusion Models
Metod Jazbec
Eliot Wong-Toi
Guoxuan Xia
Dan Zhang
Eric T. Nalisnick
Stephan Mandt
DiffM
127
1
0
28 Feb 2025
Logit Disagreement: OoD Detection with Bayesian Neural Networks
Logit Disagreement: OoD Detection with Bayesian Neural Networks
Kevin Raina
UQCVBDLUDPER
167
0
0
24 Feb 2025
Unsupervised Hybrid framework for ANomaly Detection (HAND) -- applied to
  Screening Mammogram
Unsupervised Hybrid framework for ANomaly Detection (HAND) -- applied to Screening Mammogram
Zhemin Zhang
Bhavika Patel
Bhavik Patel
Imon Banerjee
66
0
0
17 Sep 2024
Decoder ensembling for learned latent geometries
Decoder ensembling for learned latent geometries
Stas Syrota
Pablo Moreno-Muñoz
Søren Hauberg
DRLAI4CE
67
2
0
14 Aug 2024
A View on Out-of-Distribution Identification from a Statistical Testing
  Theory Perspective
A View on Out-of-Distribution Identification from a Statistical Testing Theory Perspective
Alberto Caron
Chris Hicks
V. Mavroudis
OODD
151
2
0
05 May 2024
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Alexander M¨ollers
Alexander Immer
Elvin Isufi
Vincent Fortuin
SSLBDLUQCV
125
1
0
30 Nov 2023
Bayesian Domain Invariant Learning via Posterior Generalization of
  Parameter Distributions
Bayesian Domain Invariant Learning via Posterior Generalization of Parameter Distributions
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
BDLOOD
97
1
0
25 Oct 2023
Adversarial Bayesian Augmentation for Single-Source Domain
  Generalization
Adversarial Bayesian Augmentation for Single-Source Domain Generalization
Sheng Cheng
Tejas Gokhale
Yezhou Yang
OOD
67
16
0
18 Jul 2023
Vacant Holes for Unsupervised Detection of the Outliers in Compact
  Latent Representation
Vacant Holes for Unsupervised Detection of the Outliers in Compact Latent Representation
Misha Glazunov
Apostolis Zarras
AAMLDRL
55
1
0
16 Jun 2023
Fully Bayesian VIB-DeepSSM
Fully Bayesian VIB-DeepSSM
Jadie Adams
Shireen Y. Elhabian
59
10
0
09 May 2023
MSS-PAE: Saving Autoencoder-based Outlier Detection from Unexpected
  Reconstruction
MSS-PAE: Saving Autoencoder-based Outlier Detection from Unexpected Reconstruction
Xu Tan
Jiawei Yang
Junqi Chen
S. Rahardja
S. Rahardja
UQCV
82
2
0
03 Apr 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDaBDLUQCV
81
7
0
09 Feb 2023
Towards Dependable Autonomous Systems Based on Bayesian Deep Learning
  Components
Towards Dependable Autonomous Systems Based on Bayesian Deep Learning Components
F. Arnez
H. Espinoza
A. Radermacher
F. Terrier
UQCV
70
5
0
12 Jan 2023
Do Bayesian Variational Autoencoders Know What They Don't Know?
Do Bayesian Variational Autoencoders Know What They Don't Know?
Misha Glazunov
Apostolis Zarras
UQCVBDL
63
5
0
29 Dec 2022
A Bayesian Framework for Digital Twin-Based Control, Monitoring, and
  Data Collection in Wireless Systems
A Bayesian Framework for Digital Twin-Based Control, Monitoring, and Data Collection in Wireless Systems
Clement Ruah
Osvaldo Simeone
Bashir M. Al-Hashimi
220
29
0
02 Dec 2022
Digital Twin-Based Multiple Access Optimization and Monitoring via
  Model-Driven Bayesian Learning
Digital Twin-Based Multiple Access Optimization and Monitoring via Model-Driven Bayesian Learning
Clement Ruah
Osvaldo Simeone
Bashir M. Al-Hashimi
83
6
0
11 Oct 2022
Leveraging variational autoencoders for multiple data imputation
Leveraging variational autoencoders for multiple data imputation
Breeshey Roskams-Hieter
J. Wells
S. Wade
DRL
54
5
0
30 Sep 2022
Bayesian Continual Learning via Spiking Neural Networks
Bayesian Continual Learning via Spiking Neural Networks
N. Skatchkovsky
Hyeryung Jang
Osvaldo Simeone
BDL
75
18
0
29 Aug 2022
Robust Bayesian Learning for Reliable Wireless AI: Framework and
  Applications
Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
79
15
0
01 Jul 2022
Laplacian Autoencoders for Learning Stochastic Representations
Laplacian Autoencoders for Learning Stochastic Representations
M. Miani
Frederik Warburg
Pablo Moreno-Muñoz
Nicke Skafte Detlefsen
Søren Hauberg
UQCVBDLSSL
83
11
0
30 Jun 2022
Quantifying and Using System Uncertainty in UAV Navigation
Quantifying and Using System Uncertainty in UAV Navigation
F. Arnez
A. Radermacher
H. Espinoza
BDLUQCV
65
4
0
04 Jun 2022
Bayesian autoencoders with uncertainty quantification: Towards
  trustworthy anomaly detection
Bayesian autoencoders with uncertainty quantification: Towards trustworthy anomaly detection
Bang Xiang Yong
Alexandra Brintrup
UQCV
59
26
0
25 Feb 2022
Multiple Importance Sampling ELBO and Deep Ensembles of Variational
  Approximations
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
134
17
0
22 Feb 2022
Bayesian Learning via Neural Schrödinger-Föllmer Flows
Bayesian Learning via Neural Schrödinger-Föllmer Flows
Francisco Vargas
Andrius Ovsianas
David Fernandes
Mark Girolami
Neil D. Lawrence
Nikolas Nusken
BDL
150
49
0
20 Nov 2021
CVAD: A generic medical anomaly detector based on Cascade VAE
CVAD: A generic medical anomaly detector based on Cascade VAE
Xiaoyuan Guo
J. Gichoya
S. Purkayastha
Imon Banerjee
OODD
66
8
0
29 Oct 2021
Bayesian Autoencoders: Analysing and Fixing the Bernoulli likelihood for
  Out-of-Distribution Detection
Bayesian Autoencoders: Analysing and Fixing the Bernoulli likelihood for Out-of-Distribution Detection
Bang Xiang Yong
Tim Pearce
Alexandra Brintrup
OODDUQCV
70
6
0
28 Jul 2021
Improving Variational Autoencoder based Out-of-Distribution Detection
  for Embedded Real-time Applications
Improving Variational Autoencoder based Out-of-Distribution Detection for Embedded Real-time Applications
Yeli Feng
Daniel Jun Xian Ng
Arvind Easwaran
OODD
84
18
0
25 Jul 2021
Model Selection for Bayesian Autoencoders
Model Selection for Bayesian Autoencoders
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Pietro Michiardi
Edwin V. Bonilla
Maurizio Filippone
BDL
84
13
0
11 Jun 2021
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
Zehao Xiao
Jiayi Shen
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
BDLUQCVOOD
45
40
0
09 May 2021
Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
  Random Function Approach
Reducing the Amortization Gap in Variational Autoencoders: A Bayesian Random Function Approach
Minyoung Kim
Vladimir Pavlovic
BDL
97
6
0
05 Feb 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
380
1,952
0
12 Nov 2020
Generative Model-Enhanced Human Motion Prediction
Generative Model-Enhanced Human Motion Prediction
Anthony Bourached
Ryan-Rhys Griffiths
Robert J. Gray
A. Jha
P. Nachev
75
15
0
05 Oct 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with
  Reliable Uncertainty Estimation
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODDUQCV
93
51
0
16 Jul 2020
Identifying Causal-Effect Inference Failure with Uncertainty-Aware
  Models
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models
Andrew Jesson
Sören Mindermann
Uri Shalit
Y. Gal
CML
76
74
0
01 Jul 2020
Sample-Efficient Optimization in the Latent Space of Deep Generative
  Models via Weighted Retraining
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
110
143
0
16 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCVBDL
110
117
0
11 Jun 2020
PlaNet of the Bayesians: Reconsidering and Improving Deep Planning
  Network by Incorporating Bayesian Inference
PlaNet of the Bayesians: Reconsidering and Improving Deep Planning Network by Incorporating Bayesian Inference
Masashi Okada
Norio Kosaka
T. Taniguchi
66
43
0
01 Mar 2020
Detecting Out-of-Distribution Examples with In-distribution Examples and
  Gram Matrices
Detecting Out-of-Distribution Examples with In-distribution Examples and Gram Matrices
Chandramouli Shama Sastry
Sageev Oore
OODD
77
54
0
28 Dec 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
90
51
0
02 Jul 2019
1