Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.03263
Cited By
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
6 December 2019
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One"
48 / 48 papers shown
Title
Energy-based Preference Optimization for Test-time Adaptation
Yewon Han
Seoyun Yang
Taesup Kim
TTA
139
0
0
26 May 2025
Out-of-Distribution Segmentation in Autonomous Driving: Problems and State of the Art
Youssef Shoeb
Azarm Nowzad
Hanno Gottschalk
UQCV
132
2
0
04 Mar 2025
Your contrastive learning problem is secretly a distribution alignment problem
Zihao Chen
Chi-Heng Lin
Ran Liu
Jingyun Xiao
Eva L. Dyer
88
1
0
27 Feb 2025
Benchmarking Predictive Coding Networks -- Made Simple
Luca Pinchetti
Chang Qi
Oleh Lokshyn
Gaspard Olivers
Cornelius Emde
...
Simon Frieder
Bayar I. Menzat
Rafal Bogacz
Thomas Lukasiewicz
Tommaso Salvatori
140
6
0
17 Feb 2025
GOLD: Graph Out-of-Distribution Detection via Implicit Adversarial Latent Generation
Danny Wang
Ruihong Qiu
Guangdong Bai
Zi Huang
259
2
0
09 Feb 2025
Energy-Based Concept Bottleneck Models: Unifying Prediction, Concept Intervention, and Probabilistic Interpretations
Xin-Chao Xu
Yi Qin
Lu Mi
Hao Wang
Xuelong Li
94
11
0
03 Jan 2025
Self-Supervised Likelihood Estimation with Energy Guidance for Anomaly Segmentation in Urban Scenes
Yuanpeng Tu
Yuxi Li
Boshen Zhang
Liang Liu
Jing Zhang
Yun Wang
C. Zhao
114
3
0
03 Jan 2025
Pretrained Reversible Generation as Unsupervised Visual Representation Learning
Rongkun Xue
Jinouwen Zhang
Yazhe Niu
Dazhong Shen
Bingqi Ma
Yu Liu
Jing Yang
100
0
0
29 Nov 2024
Artificial Kuramoto Oscillatory Neurons
Takeru Miyato
Sindy Löwe
Andreas Geiger
Max Welling
AI4CE
127
7
0
17 Oct 2024
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
87
3
0
13 Oct 2024
Efficient Image-to-Image Diffusion Classifier for Adversarial Robustness
Hefei Mei
Minjing Dong
Chang Xu
AAML
94
0
0
16 Aug 2024
Uncertainty for Active Learning on Graphs
Dominik Fuchsgruber
Tom Wollschlager
Bertrand Charpentier
Antonio Oroz
Stephan Günnemann
87
11
0
02 May 2024
Continual Adversarial Defense
Qian Wang
Yaoyao Liu
Hefei Ling
Yingwei Li
Qihao Liu
Ping Li
AAML
75
4
0
15 Dec 2023
Maximizing Discrimination Capability of Knowledge Distillation with Energy Function
Seonghak Kim
Gyeongdo Ham
Suin Lee
Donggon Jang
Daeshik Kim
104
4
0
24 Nov 2023
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
129
3,803
0
12 Jul 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
57
544
0
09 Jun 2019
Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Balaji Lakshminarayanan
OODD
37
86
0
07 Jun 2019
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDL
TPM
DRL
40
375
0
06 Jun 2019
Image Synthesis with a Single (Robust) Classifier
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Andrew Ilyas
Logan Engstrom
Aleksander Madry
AAML
21
34
0
06 Jun 2019
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
48
210
0
22 Apr 2019
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
Erik Nijkamp
Mitch Hill
Tian Han
Song-Chun Zhu
Ying Nian Wu
32
154
0
29 Mar 2019
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
65
621
0
02 Nov 2018
Do Deep Generative Models Know What They Don't Know?
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
OOD
39
753
0
22 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
179
3,110
0
09 Jul 2018
Adversarial Distillation of Bayesian Neural Network Posteriors
Kuan-Chieh Wang
Paul Vicol
James Lucas
Li Gu
Roger C. Grosse
R. Zemel
UQCV
GAN
AAML
BDL
31
56
0
27 Jun 2018
Conditional Noise-Contrastive Estimation of Unnormalised Models
Ciwan Ceylan
Michael U. Gutmann
38
42
0
10 Jun 2018
Generative Modeling by Inclusive Neural Random Fields with Applications in Image Generation and Anomaly Detection
Yunfu Song
Zhijian Ou
DiffM
35
30
0
01 Jun 2018
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
36
369
0
23 May 2018
Are Generative Classifiers More Robust to Adversarial Attacks?
Yingzhen Li
John Bradshaw
Yash Sharma
AAML
66
78
0
19 Feb 2018
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
121
4,421
0
16 Feb 2018
First-order Adversarial Vulnerability of Neural Networks and Input Dimension
Carl-Johann Simon-Gabriel
Yann Ollivier
Léon Bottou
Bernhard Schölkopf
David Lopez-Paz
AAML
44
48
0
05 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
147
3,171
0
01 Feb 2018
A Note on the Inception Score
Shane T. Barratt
Rishi Sharma
EGVM
55
688
0
06 Jan 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
55
1,335
0
12 Dec 2017
Wasserstein Introspective Neural Networks
Kwonjoon Lee
Weijian Xu
Fan Fan
Zhuowen Tu
46
57
0
24 Nov 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
89
787
0
30 Oct 2017
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
Jonas Rauber
Wieland Brendel
Matthias Bethge
AAML
38
283
0
13 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
188
11,962
0
19 Jun 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
154
5,774
0
14 Jun 2017
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
Shiyu Liang
Yixuan Li
R. Srikant
UQCV
OODD
86
2,046
0
08 Jun 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
36
933
0
19 Jan 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
86
3,420
0
07 Oct 2016
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
323
8,999
0
10 Jun 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
217
7,951
0
23 May 2016
A Theory of Generative ConvNet
Jianwen Xie
Yang Lu
Song-Chun Zhu
Ying Nian Wu
DiffM
GAN
65
318
0
10 Feb 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
415
9,233
0
06 Jun 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
493
149,474
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
126
18,922
0
20 Dec 2014
1