Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.02292
Cited By
Deep Double Descent: Where Bigger Models and More Data Hurt
4 December 2019
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Double Descent: Where Bigger Models and More Data Hurt"
50 / 205 papers shown
Title
On Memorization in Probabilistic Deep Generative Models
G. V. D. Burg
Christopher K. I. Williams
TDI
25
59
0
06 Jun 2021
Post-mortem on a deep learning contest: a Simpson's paradox and the complementary roles of scale metrics versus shape metrics
Charles H. Martin
Michael W. Mahoney
18
19
0
01 Jun 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
13
213
0
26 May 2021
Receptive Field Regularization Techniques for Audio Classification and Tagging with Deep Convolutional Neural Networks
Khaled Koutini
Hamid Eghbalzadeh
Gerhard Widmer
30
46
0
26 May 2021
A brain basis of dynamical intelligence for AI and computational neuroscience
J. Monaco
Kanaka Rajan
Grace M. Hwang
AI4CE
26
6
0
15 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
27
194
0
06 May 2021
Deep limits and cut-off phenomena for neural networks
B. Avelin
A. Karlsson
AI4CE
38
2
0
21 Apr 2021
Low-Regret Active learning
Cenk Baykal
Lucas Liebenwein
Dan Feldman
Daniela Rus
UQCV
36
3
0
06 Apr 2021
The Shape of Learning Curves: a Review
T. Viering
Marco Loog
18
122
0
19 Mar 2021
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy
Lucas Liebenwein
Cenk Baykal
Brandon Carter
David K Gifford
Daniela Rus
AAML
40
71
0
04 Mar 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
27
93
0
02 Mar 2021
GIST: Distributed Training for Large-Scale Graph Convolutional Networks
Cameron R. Wolfe
Jingkang Yang
Arindam Chowdhury
Chen Dun
Artun Bayer
Santiago Segarra
Anastasios Kyrillidis
BDL
GNN
LRM
51
9
0
20 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial Estimation
Alexandre Ramé
Matthieu Cord
FedML
53
51
0
14 Jan 2021
AutoDropout: Learning Dropout Patterns to Regularize Deep Networks
Hieu H. Pham
Quoc V. Le
76
56
0
05 Jan 2021
Analysis of the Scalability of a Deep-Learning Network for Steganography "Into the Wild"
Hugo Ruiz
Marc Chaumont
Mehdi Yedroudj
A. Amara
Frédéric Comby
Gérard Subsol
29
9
0
29 Dec 2020
Applying Deutsch's concept of good explanations to artificial intelligence and neuroscience -- an initial exploration
Daniel C. Elton
23
4
0
16 Dec 2020
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
35
50
0
16 Dec 2020
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
33
48
0
14 Dec 2020
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
77
670
0
06 Nov 2020
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
39
93
0
04 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
44
24
0
27 Oct 2020
Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
J. Rocks
Pankaj Mehta
23
41
0
26 Oct 2020
State space models for building control: how deep should you go?
B. Schubnel
R. Carrillo
Paolo Taddeo
L. C. Casals
J. Salom
Y. Stauffer
P. Alet
27
14
0
23 Oct 2020
Data-Efficient Pretraining via Contrastive Self-Supervision
Nils Rethmeier
Isabelle Augenstein
23
20
0
02 Oct 2020
Effective Regularization Through Loss-Function Metalearning
Santiago Gonzalez
Risto Miikkulainen
29
5
0
02 Oct 2020
Small Data, Big Decisions: Model Selection in the Small-Data Regime
J. Bornschein
Francesco Visin
Simon Osindero
15
36
0
26 Sep 2020
Efficient Quantum State Sample Tomography with Basis-dependent Neural-networks
Alistair W. R. Smith
Johnnie Gray
M. S. Kim
11
28
0
16 Sep 2020
Statistical Query Algorithms and Low-Degree Tests Are Almost Equivalent
Matthew Brennan
Guy Bresler
Samuel B. Hopkins
Jingkai Li
T. Schramm
19
62
0
13 Sep 2020
Unsupervised MRI Reconstruction with Generative Adversarial Networks
Elizabeth K. Cole
John M. Pauly
S. Vasanawala
Frank Ong
GAN
MedIm
19
50
0
29 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
28
61
0
03 Aug 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
28
3
0
19 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
To Pretrain or Not to Pretrain: Examining the Benefits of Pretraining on Resource Rich Tasks
Sinong Wang
Madian Khabsa
Hao Ma
18
26
0
15 Jun 2020
Double Descent Risk and Volume Saturation Effects: A Geometric Perspective
Prasad Cheema
M. Sugiyama
14
3
0
08 Jun 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
45
98
0
05 Jun 2020
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
152
371
0
09 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Going in circles is the way forward: the role of recurrence in visual inference
R. S. V. Bergen
N. Kriegeskorte
17
82
0
26 Mar 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
93
152
0
02 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
47
785
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
37
69
0
25 Feb 2020
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
25
165
0
21 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
639
0
20 Feb 2020
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
31
82
0
19 Feb 2020
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
36
145
0
13 Nov 2019
FLAML: A Fast and Lightweight AutoML Library
Chi Wang
Qingyun Wu
Markus Weimer
Erkang Zhu
30
196
0
12 Nov 2019
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Cinjon Resnick
Abhinav Gupta
Jakob N. Foerster
Andrew M. Dai
Kyunghyun Cho
20
51
0
24 Oct 2019
Predicting materials properties without crystal structure: Deep representation learning from stoichiometry
Rhys E. A. Goodall
A. Lee
15
253
0
01 Oct 2019
Previous
1
2
3
4
5
Next