Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.00873
Cited By
Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
27 November 2019
E. Kharazmi
Z. Zhang
George Karniadakis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Physics-Informed Neural Networks For Solving Partial Differential Equations"
39 / 39 papers shown
Title
Physics-informed solution reconstruction in elasticity and heat transfer using the explicit constraint force method
Conor Rowan
K. Maute
Alireza Doostan
AI4CE
45
0
0
08 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
81
0
0
25 Apr 2025
DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
54
1
0
10 Feb 2025
The Finite Element Neural Network Method: One Dimensional Study
Mohammed Abda
Elsa Piollet
Christopher Blake
Frédérick P. Gosselin
71
0
0
21 Jan 2025
Differentiable programming across the PDE and Machine Learning barrier
N. Bouziani
David A. Ham
Ado Farsi
PINN
AI4CE
37
1
0
09 Sep 2024
An efficient hp-Variational PINNs framework for incompressible Navier-Stokes equations
T. Anandh
Divij Ghose
Ankit Tyagi
Abhineet Gupta
Suranjan Sarkar
Sashikumaar Ganesan
33
0
0
06 Sep 2024
Astral: training physics-informed neural networks with error majorants
V. Fanaskov
Tianchi Yu
Alexander Rudikov
Ivan V. Oseledets
33
1
0
04 Jun 2024
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
R. Mattey
Susanta Ghosh
AI4CE
43
1
0
09 May 2024
DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training
Zhongkai Hao
Chang Su
Songming Liu
Julius Berner
Chengyang Ying
Hang Su
A. Anandkumar
Jian Song
Jun Zhu
AI4TS
AI4CE
26
22
0
06 Mar 2024
Adversarial Training for Physics-Informed Neural Networks
Yao Li
Shengzhu Shi
Zhichang Guo
Boying Wu
AAML
PINN
25
0
0
18 Oct 2023
Computing excited states of molecules using normalizing flows
Yahya Saleh
Álvaro Fernández Corral
Emil Vogt
Armin Iske
J. Küpper
A. Yachmenev
35
7
0
31 Aug 2023
ParticleWNN: a Novel Neural Networks Framework for Solving Partial Differential Equations
Yaohua Zang
Gang Bao
29
4
0
21 May 2023
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
35
20
0
03 Mar 2023
Learning Partial Differential Equations by Spectral Approximates of General Sobolev Spaces
Juan Esteban Suarez Cardona
Phil-Alexander Hofmann
Michael Hecht
19
2
0
12 Jan 2023
Physics-Constrained Generative Adversarial Networks for 3D Turbulence
D. Tretiak
A. Mohan
Daniel Livescu
GAN
AI4CE
PINN
18
2
0
01 Dec 2022
Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics Informed Neural Nets and strengthens their Approximation Power
Juan Esteban Suarez Cardona
Michael Hecht
24
4
0
23 Nov 2022
A Deep Double Ritz Method (D
2
^2
2
RM) for solving Partial Differential Equations using Neural Networks
C. Uriarte
David Pardo
I. Muga
J. Muñoz‐Matute
33
17
0
07 Nov 2022
Bayesian deep learning framework for uncertainty quantification in high dimensions
Jeahan Jung
Minseok Choi
BDL
UQCV
15
1
0
21 Oct 2022
A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs
Songming Liu
Zhongkai Hao
Chengyang Ying
Hang Su
Jun Zhu
Ze Cheng
AI4CE
18
17
0
06 Oct 2022
Semi-analytic PINN methods for singularly perturbed boundary value problems
G. Gie
Youngjoon Hong
Chang-Yeol Jung
PINN
8
5
0
19 Aug 2022
Unsupervised Legendre-Galerkin Neural Network for Singularly Perturbed Partial Differential Equations
Junho Choi
N. Kim
Youngjoon Hong
AI4CE
24
0
0
21 Jul 2022
Momentum Diminishes the Effect of Spectral Bias in Physics-Informed Neural Networks
G. Farhani
Alexander Kazachek
Boyu Wang
19
6
0
29 Jun 2022
Respecting causality is all you need for training physics-informed neural networks
Sizhuang He
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
40
199
0
14 Mar 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,180
0
14 Jan 2022
Learning To Estimate Regions Of Attraction Of Autonomous Dynamical Systems Using Physics-Informed Neural Networks
Cody Scharzenberger
Joe Hays
40
3
0
18 Nov 2021
Data-Centric Engineering: integrating simulation, machine learning and statistics. Challenges and Opportunities
Indranil Pan
L. Mason
Omar K. Matar
AI4CE
36
45
0
07 Nov 2021
NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for Parametric PDEs
Biswajit Khara
Aditya Balu
Ameya Joshi
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
26
19
0
04 Oct 2021
Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
29
42
0
25 Jun 2021
Long-time integration of parametric evolution equations with physics-informed DeepONets
Sizhuang He
P. Perdikaris
AI4CE
24
117
0
09 Jun 2021
Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks
N. Sukumar
Ankit Srivastava
PINN
AI4CE
41
241
0
17 Apr 2021
The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
Stefano Markidis
PINN
39
182
0
12 Mar 2021
Hybrid FEM-NN models: Combining artificial neural networks with the finite element method
Sebastian K. Mitusch
S. Funke
M. Kuchta
AI4CE
31
93
0
04 Jan 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Physics-Informed Neural Network for Modelling the Thermochemical Curing Process of Composite-Tool Systems During Manufacture
S. Niaki
E. Haghighat
Trevor Campbell
Xinglong Li
R. Vaziri
AI4CE
13
203
0
27 Nov 2020
Deep neural network for solving differential equations motivated by Legendre-Galerkin approximation
Bryce Chudomelka
Youngjoon Hong
Hyunwoo J. Kim
Jinyoung Park
19
7
0
24 Oct 2020
Energy-based error bound of physics-informed neural network solutions in elasticity
Mengwu Guo
E. Haghighat
PINN
45
28
0
18 Oct 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
17
222
0
10 Jun 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
54
123
0
17 May 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
21
291
0
13 Jan 2020
1