ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.12116
  4. Cited By
Analysis of Explainers of Black Box Deep Neural Networks for Computer
  Vision: A Survey

Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey

27 November 2019
Vanessa Buhrmester
David Münch
Michael Arens
    MLAU
    FaML
    XAI
    AAML
ArXivPDFHTML

Papers citing "Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey"

50 / 70 papers shown
Title
Distilling Machine Learning's Added Value: Pareto Fronts in Atmospheric Applications
Distilling Machine Learning's Added Value: Pareto Fronts in Atmospheric Applications
Tom Beucler
Arthur Grundner
Sara Shamekh
Peter Ukkonen
Matthew Chantry
Ryan Lagerquist
73
0
0
04 Aug 2024
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
Yue Liu
Alexandar J. Thomson
Matthew M. Engelhard
David Page
David Page
BDL
AI4CE
160
0
0
27 May 2023
A Survey on the Explainability of Supervised Machine Learning
A Survey on the Explainability of Supervised Machine Learning
Nadia Burkart
Marco F. Huber
FaML
XAI
48
773
0
16 Nov 2020
Opportunities and Challenges in Explainable Artificial Intelligence
  (XAI): A Survey
Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey
Arun Das
P. Rad
XAI
152
602
0
16 Jun 2020
An Investigation of COVID-19 Spreading Factors with Explainable AI
  Techniques
An Investigation of COVID-19 Spreading Factors with Explainable AI Techniques
Xiuyi Fan
Siyuan Liu
Jiarong Chen
T. Henderson
30
7
0
05 May 2020
DeepCOVIDExplainer: Explainable COVID-19 Diagnosis Based on Chest X-ray
  Images
DeepCOVIDExplainer: Explainable COVID-19 Diagnosis Based on Chest X-ray Images
Md. Rezaul Karim
Till Dohmen
Dietrich-Rebholz Schuhmann
Stefan Decker
Michael Cochez
Oya Beyan
53
88
0
09 Apr 2020
Attacking Optical Flow
Attacking Optical Flow
Anurag Ranjan
J. Janai
Andreas Geiger
Michael J. Black
AAML
3DPC
60
87
0
22 Oct 2019
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Ruth C. Fong
Mandela Patrick
Andrea Vedaldi
AAML
66
415
0
18 Oct 2019
Summit: Scaling Deep Learning Interpretability by Visualizing Activation
  and Attribution Summarizations
Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations
Fred Hohman
Haekyu Park
Caleb Robinson
Duen Horng Chau
FAtt
3DH
HAI
39
217
0
04 Apr 2019
On the (In)fidelity and Sensitivity for Explanations
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
58
453
0
27 Jan 2019
Equalizing Gender Biases in Neural Machine Translation with Word
  Embeddings Techniques
Equalizing Gender Biases in Neural Machine Translation with Word Embeddings Techniques
Joel Escudé Font
Marta R. Costa-jussá
53
170
0
10 Jan 2019
ImageNet-trained CNNs are biased towards texture; increasing shape bias
  improves accuracy and robustness
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
100
2,668
0
29 Nov 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
105
681
0
28 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
86
1,858
0
31 May 2018
Adversarial Attacks on Face Detectors using Neural Net based Constrained
  Optimization
Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization
A. Bose
P. Aarabi
AAML
40
89
0
31 May 2018
Multimodal Explanations: Justifying Decisions and Pointing to the
  Evidence
Multimodal Explanations: Justifying Decisions and Pointing to the Evidence
Dong Huk Park
Lisa Anne Hendricks
Zeynep Akata
Anna Rohrbach
Bernt Schiele
Trevor Darrell
Marcus Rohrbach
73
421
0
15 Feb 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
124
3,957
0
06 Feb 2018
How do Humans Understand Explanations from Machine Learning Systems? An
  Evaluation of the Human-Interpretability of Explanation
How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation
Menaka Narayanan
Emily Chen
Jeffrey He
Been Kim
S. Gershman
Finale Doshi-Velez
FAtt
XAI
99
242
0
02 Feb 2018
A General Framework for Adversarial Examples with Objectives
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
51
193
0
31 Dec 2017
An Introduction to Deep Visual Explanation
An Introduction to Deep Visual Explanation
H. Babiker
Randy Goebel
FAtt
AAML
52
19
0
26 Nov 2017
Using KL-divergence to focus Deep Visual Explanation
Using KL-divergence to focus Deep Visual Explanation
H. Babiker
Randy Goebel
FAtt
54
12
0
17 Nov 2017
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
106
2,297
0
30 Oct 2017
Adversarial Examples for Evaluating Reading Comprehension Systems
Adversarial Examples for Evaluating Reading Comprehension Systems
Robin Jia
Percy Liang
AAML
ELM
196
1,605
0
23 Jul 2017
SmoothGrad: removing noise by adding noise
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
201
2,221
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,906
0
22 May 2017
Learning how to explain neural networks: PatternNet and
  PatternAttribution
Learning how to explain neural networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans
Kristof T. Schütt
Maximilian Alber
K. Müller
D. Erhan
Been Kim
Sven Dähne
XAI
FAtt
73
339
0
16 May 2017
Network Dissection: Quantifying Interpretability of Deep Visual
  Representations
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
146
1,516
1
19 Apr 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,519
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
198
3,871
0
10 Apr 2017
Learning to Generate Reviews and Discovering Sentiment
Learning to Generate Reviews and Discovering Sentiment
Alec Radford
Rafal Jozefowicz
Ilya Sutskever
93
509
0
05 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
182
5,986
0
04 Mar 2017
Opening the Black Box of Deep Neural Networks via Information
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
98
1,409
0
02 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
399
3,787
0
28 Feb 2017
Visualizing Deep Neural Network Decisions: Prediction Difference
  Analysis
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
L. Zintgraf
Taco S. Cohen
T. Adel
Max Welling
FAtt
132
708
0
15 Feb 2017
TreeView: Peeking into Deep Neural Networks Via Feature-Space
  Partitioning
TreeView: Peeking into Deep Neural Networks Via Feature-Space Partitioning
Jayaraman J. Thiagarajan
B. Kailkhura
P. Sattigeri
Karthikeyan N. Ramamurthy
54
38
0
22 Nov 2016
VisualBackProp: efficient visualization of CNNs
VisualBackProp: efficient visualization of CNNs
Mariusz Bojarski
A. Choromańska
K. Choromanski
Bernhard Firner
L. Jackel
Urs Muller
Karol Zieba
FAtt
65
74
0
16 Nov 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
297
20,003
0
07 Oct 2016
RETAIN: An Interpretable Predictive Model for Healthcare using Reverse
  Time Attention Mechanism
RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism
Edward Choi
M. T. Bahadori
Joshua A. Kulas
A. Schuetz
Walter F. Stewart
Jimeng Sun
AI4TS
115
1,245
0
19 Aug 2016
Top-down Neural Attention by Excitation Backprop
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
79
947
0
01 Aug 2016
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
  Embeddings
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
Tolga Bolukbasi
Kai-Wei Chang
James Zou
Venkatesh Saligrama
Adam Kalai
CVBM
FaML
107
3,135
0
21 Jul 2016
European Union regulations on algorithmic decision-making and a "right
  to explanation"
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaML
AILaw
63
1,900
0
28 Jun 2016
Rationalizing Neural Predictions
Rationalizing Neural Predictions
Tao Lei
Regina Barzilay
Tommi Jaakkola
110
812
0
13 Jun 2016
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
180
3,699
0
10 Jun 2016
The Latin American Giant Observatory: a successful collaboration in
  Latin America based on Cosmic Rays and computer science domains
The Latin American Giant Observatory: a successful collaboration in Latin America based on Cosmic Rays and computer science domains
Hernán Asorey
R. Mayo-García
L. Núñez
M. Pascual
A. J. Rubio-Montero
M. Suárez-Durán
L. A. Torres-Niño
81
5
0
30 May 2016
Interpretable Deep Neural Networks for Single-Trial EEG Classification
Interpretable Deep Neural Networks for Single-Trial EEG Classification
I. Sturm
Sebastian Bach
Wojciech Samek
K. Müller
58
353
0
27 Apr 2016
Colorful Image Colorization
Colorful Image Colorization
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
127
3,529
0
28 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,976
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
250
9,308
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
148
4,895
0
14 Nov 2015
12
Next