ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.12116
  4. Cited By
Analysis of Explainers of Black Box Deep Neural Networks for Computer
  Vision: A Survey

Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey

27 November 2019
Vanessa Buhrmester
David Münch
Michael Arens
    MLAU
    FaML
    XAI
    AAML
ArXivPDFHTML

Papers citing "Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey"

20 / 70 papers shown
Title
Interpretable classifiers using rules and Bayesian analysis: Building a
  better stroke prediction model
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
62
743
0
05 Nov 2015
Evaluating the visualization of what a Deep Neural Network has learned
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
136
1,192
0
21 Sep 2015
Understanding Neural Networks Through Deep Visualization
Understanding Neural Networks Through Deep Visualization
J. Yosinski
Jeff Clune
Anh Totti Nguyen
Thomas J. Fuchs
Hod Lipson
FAtt
AI4CE
122
1,872
0
22 Jun 2015
Inverting Visual Representations with Convolutional Networks
Inverting Visual Representations with Convolutional Networks
Alexey Dosovitskiy
Thomas Brox
SSL
FAtt
61
665
0
09 Jun 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual
  Attention
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Ke Xu
Jimmy Ba
Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
R. Zemel
Yoshua Bengio
DiffM
334
10,069
0
10 Feb 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,667
0
21 Dec 2014
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
274
19,049
0
20 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
158
3,271
0
05 Dec 2014
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
119
1,963
0
26 Nov 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,348
0
04 Sep 2014
Analyzing the Performance of Multilayer Neural Networks for Object
  Recognition
Analyzing the Performance of Multilayer Neural Networks for Object Recognition
Pulkit Agrawal
Ross B. Girshick
Jitendra Malik
SSL
107
444
0
07 Jul 2014
Methods and Models for Interpretable Linear Classification
Methods and Models for Interpretable Linear Classification
Berk Ustun
Cynthia Rudin
87
44
0
16 May 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
413
43,638
0
01 May 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
268
14,918
1
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,292
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
591
15,876
0
12 Nov 2013
Counterfactual Reasoning and Learning Systems
Counterfactual Reasoning and Learning Systems
Léon Bottou
J. Peters
J. Q. Candela
Denis Xavier Charles
D. M. Chickering
Elon Portugaly
Dipankar Ray
Patrice Y. Simard
Edward Snelson
CML
OffRL
385
783
0
11 Sep 2012
Multi-column Deep Neural Networks for Image Classification
Multi-column Deep Neural Networks for Image Classification
D. Ciresan
U. Meier
Jürgen Schmidhuber
162
3,939
0
13 Feb 2012
Natural Language Processing (almost) from Scratch
Natural Language Processing (almost) from Scratch
R. Collobert
Jason Weston
Léon Bottou
Michael Karlen
Koray Kavukcuoglu
Pavel P. Kuksa
186
7,725
0
02 Mar 2011
How to Explain Individual Classification Decisions
How to Explain Individual Classification Decisions
D. Baehrens
T. Schroeter
Stefan Harmeling
M. Kawanabe
K. Hansen
K. Müller
FAtt
128
1,103
0
06 Dec 2009
Previous
12