ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.11776
  4. Cited By
Noise Robust Generative Adversarial Networks
v1v2 (latest)

Noise Robust Generative Adversarial Networks

26 November 2019
Takuhiro Kaneko
Tatsuya Harada
    NoLaOOD
ArXiv (abs)PDFHTMLGithub (65★)

Papers citing "Noise Robust Generative Adversarial Networks"

50 / 60 papers shown
Title
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
280
30,103
0
01 Mar 2022
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRLBDL
147
1,815
0
02 Jun 2019
Label-Noise Robust Multi-Domain Image-to-Image Translation
Label-Noise Robust Multi-Domain Image-to-Image Translation
Takuhiro Kaneko
Tatsuya Harada
70
3
0
06 May 2019
Making Convolutional Networks Shift-Invariant Again
Making Convolutional Networks Shift-Invariant Again
Richard Y. Zhang
OOD
91
797
0
25 Apr 2019
High-Fidelity Image Generation With Fewer Labels
High-Fidelity Image Generation With Fewer Labels
Mario Lucic
Michael Tschannen
Marvin Ritter
Xiaohua Zhai
Olivier Bachem
Sylvain Gelly
GANOOD
86
158
0
06 Mar 2019
Noise2Self: Blind Denoising by Self-Supervision
Noise2Self: Blind Denoising by Self-Supervision
Joshua D. Batson
Loic A. Royer
76
660
0
30 Jan 2019
Diversity-Sensitive Conditional Generative Adversarial Networks
Diversity-Sensitive Conditional Generative Adversarial Networks
Dingdong Yang
Seunghoon Hong
Y. Jang
Tianchen Zhao
Honglak Lee
GAN
107
216
0
25 Jan 2019
Revisiting Self-Supervised Visual Representation Learning
Revisiting Self-Supervised Visual Representation Learning
Alexander Kolesnikov
Xiaohua Zhai
Lucas Beyer
SSL
151
716
0
25 Jan 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
589
10,561
0
12 Dec 2018
Generating High Fidelity Images with Subscale Pixel Networks and
  Multidimensional Upscaling
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
Jacob Menick
Nal Kalchbrenner
74
151
0
04 Dec 2018
Self-Supervised GANs via Auxiliary Rotation Loss
Self-Supervised GANs via Auxiliary Rotation Loss
Ting Chen
Xiaohua Zhai
Marvin Ritter
Mario Lucic
N. Houlsby
SSLGAN
76
302
0
27 Nov 2018
Label-Noise Robust Generative Adversarial Networks
Label-Noise Robust Generative Adversarial Networks
Takuhiro Kaneko
Yoshitaka Ushiku
Tatsuya Harada
NoLa
87
60
0
27 Nov 2018
Class-Distinct and Class-Mutual Image Generation with GANs
Class-Distinct and Class-Mutual Image Generation with GANs
Takuhiro Kaneko
Yoshitaka Ushiku
Tatsuya Harada
67
9
0
27 Nov 2018
Noise2Void - Learning Denoising from Single Noisy Images
Noise2Void - Learning Denoising from Single Noisy Images
Alexander Krull
T. Buchholz
Florian Jug
103
1,103
0
27 Nov 2018
Robustness of Conditional GANs to Noisy Labels
Robustness of Conditional GANs to Noisy Labels
Kerry J. Halupka
A. Khetan
Zinan Lin
Stephen Moore
NoLa
67
81
0
08 Nov 2018
On Self Modulation for Generative Adversarial Networks
On Self Modulation for Generative Adversarial Networks
Ting Chen
Mario Lucic
N. Houlsby
Sylvain Gelly
GAN
62
105
0
02 Oct 2018
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock
Jeff Donahue
Karen Simonyan
262
5,394
0
28 Sep 2018
Toward Convolutional Blind Denoising of Real Photographs
Toward Convolutional Blind Denoising of Real Photographs
Shi Guo
Zifei Yan
Peng Sun
W. Zuo
Lei Zhang
96
911
0
12 Jul 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
295
3,134
0
09 Jul 2018
Self-Attention Generative Adversarial Networks
Self-Attention Generative Adversarial Networks
Han Zhang
Ian Goodfellow
Dimitris N. Metaxas
Augustus Odena
GAN
148
3,726
0
21 May 2018
Generalized Cross Entropy Loss for Training Deep Neural Networks with
  Noisy Labels
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Zhilu Zhang
M. Sabuncu
NoLa
83
2,602
0
20 May 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely
  Noisy Labels
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
113
2,069
0
18 Apr 2018
Joint Optimization Framework for Learning with Noisy Labels
Joint Optimization Framework for Learning with Noisy Labels
Daiki Tanaka
Daiki Ikami
T. Yamasaki
Kiyoharu Aizawa
NoLa
74
711
0
30 Mar 2018
Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OODNoLa
146
1,426
0
24 Mar 2018
Unsupervised Representation Learning by Predicting Image Rotations
Unsupervised Representation Learning by Predicting Image Rotations
Spyros Gidaris
Praveer Singh
N. Komodakis
OODSSLDRL
258
3,290
0
21 Mar 2018
Improving GANs Using Optimal Transport
Improving GANs Using Optimal Transport
Tim Salimans
Han Zhang
Alec Radford
Dimitris N. Metaxas
OTGAN
67
324
0
15 Mar 2018
Noise2Noise: Learning Image Restoration without Clean Data
Noise2Noise: Learning Image Restoration without Clean Data
J. Lehtinen
Jacob Munkberg
J. Hasselgren
S. Laine
Tero Karras
M. Aittala
Timo Aila
86
1,605
0
12 Mar 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
157
4,440
0
16 Feb 2018
Which Training Methods for GANs do actually Converge?
Which Training Methods for GANs do actually Converge?
L. Mescheder
Andreas Geiger
Sebastian Nowozin
81
1,465
0
13 Jan 2018
Robust Loss Functions under Label Noise for Deep Neural Networks
Robust Loss Functions under Label Noise for Deep Neural Networks
Aritra Ghosh
Himanshu Kumar
P. Sastry
NoLaOOD
70
957
0
27 Dec 2017
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks
  on Corrupted Labels
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
104
1,453
0
14 Dec 2017
Are GANs Created Equal? A Large-Scale Study
Are GANs Created Equal? A Large-Scale Study
Mario Lucic
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
EGVM
63
1,011
0
28 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
226
5,019
0
02 Nov 2017
Progressive Growing of GANs for Improved Quality, Stability, and
  Variation
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras
Timo Aila
S. Laine
J. Lehtinen
GAN
143
7,361
0
27 Oct 2017
FFDNet: Toward a Fast and Flexible Solution for CNN based Image
  Denoising
FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising
Peng Sun
W. Zuo
Lei Zhang
125
2,123
0
11 Oct 2017
MemNet: A Persistent Memory Network for Image Restoration
MemNet: A Persistent Memory Network for Image Restoration
Ying Tai
Jian Yang
Xiaoming Liu
Chunyan Xu
SupR
108
1,542
0
07 Aug 2017
Benchmarking Denoising Algorithms with Real Photographs
Benchmarking Denoising Algorithms with Real Photographs
Tobias Plötz
Stefan Roth
63
588
0
05 Jul 2017
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
  Equilibrium
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
M. Heusel
Hubert Ramsauer
Thomas Unterthiner
Bernhard Nessler
Sepp Hochreiter
80
465
0
26 Jun 2017
Decoupling "when to update" from "how to update"
Decoupling "when to update" from "how to update"
Eran Malach
Shai Shalev-Shwartz
NoLa
85
567
0
08 Jun 2017
The Cramer Distance as a Solution to Biased Wasserstein Gradients
The Cramer Distance as a Solution to Biased Wasserstein Gradients
Marc G. Bellemare
Ivo Danihelka
Will Dabney
S. Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
GAN
74
344
0
30 May 2017
Learning Deep Networks from Noisy Labels with Dropout Regularization
Learning Deep Networks from Noisy Labels with Dropout Regularization
Ishan Jindal
M. Nokleby
Xuewen Chen
NoLa
61
184
0
09 May 2017
Geometric GAN
Geometric GAN
Jae Hyun Lim
J. C. Ye
GAN
64
518
0
08 May 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
207
9,548
0
31 Mar 2017
Least Squares Generative Adversarial Networks
Least Squares Generative Adversarial Networks
Xudong Mao
Qing Li
Haoran Xie
Raymond Y. K. Lau
Zhen Wang
Stephen Paul Smolley
GAN
331
4,574
0
13 Nov 2016
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
342
4,629
0
10 Nov 2016
Making Deep Neural Networks Robust to Label Noise: a Loss Correction
  Approach
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Zhuang Li
NoLa
100
1,454
0
13 Sep 2016
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image
  Denoising
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
Peng Sun
W. Zuo
Yunjin Chen
Deyu Meng
Lei Zhang
SupR
142
6,995
0
13 Aug 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
272
3,702
0
26 May 2016
Improving the Robustness of Deep Neural Networks via Stability Training
Improving the Robustness of Deep Neural Networks via Stability Training
Stephan Zheng
Yang Song
Thomas Leung
Ian Goodfellow
OOD
50
638
0
15 Apr 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSegGAN
479
2,570
0
25 Jan 2016
12
Next