ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.11776
67
31
v1v2 (latest)

Noise Robust Generative Adversarial Networks

26 November 2019
Takuhiro Kaneko
Tatsuya Harada
    NoLaOOD
ArXiv (abs)PDFHTMLGithub (65★)
Abstract

Generative adversarial networks (GANs) are neural networks that learn data distributions through adversarial training. In intensive studies, recent GANs have shown promising results for reproducing training data. However, in spite of noise, they reproduce data with fidelity. As an alternative, we propose a novel family of GANs called noise-robust GANs (NR-GANs), which can learn a clean image generator even when training data are noisy. In particular, NR-GANs can solve this problem without having complete noise information (e.g., the noise distribution type, noise amount, or signal-noise relation). To achieve this, we introduce a noise generator and train it along with a clean image generator. As it is difficult to generate an image and a noise separately without constraints, we propose distribution and transformation constraints that encourage the noise generator to capture only the noise-specific components. In particular, considering such constraints under different assumptions, we devise two variants of NR-GANs for signal-independent noise and three variants of NR-GANs for signal-dependent noise. On three benchmark datasets, we demonstrate the effectiveness of NR-GANs in noise robust image generation. Furthermore, we show the applicability of NR-GANs in image denoising.

View on arXiv
Comments on this paper