Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.02508
Cited By
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
6 November 2019
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods"
38 / 138 papers shown
Title
Knowledge-Grounded Self-Rationalization via Extractive and Natural Language Explanations
Bodhisattwa Prasad Majumder
Oana-Maria Camburu
Thomas Lukasiewicz
Julian McAuley
25
35
0
25 Jun 2021
What will it take to generate fairness-preserving explanations?
Jessica Dai
Sohini Upadhyay
Stephen H. Bach
Himabindu Lakkaraju
FAtt
FaML
15
14
0
24 Jun 2021
On Locality of Local Explanation Models
Sahra Ghalebikesabi
Lucile Ter-Minassian
Karla Diaz-Ordaz
Chris Holmes
FedML
FAtt
26
39
0
24 Jun 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
W. Neiswanger
37
65
0
23 Jun 2021
A Framework for Evaluating Post Hoc Feature-Additive Explainers
Zachariah Carmichael
Walter J. Scheirer
FAtt
46
4
0
15 Jun 2021
Characterizing the risk of fairwashing
Ulrich Aïvodji
Hiromi Arai
Sébastien Gambs
Satoshi Hara
23
27
0
14 Jun 2021
On the Lack of Robust Interpretability of Neural Text Classifiers
Muhammad Bilal Zafar
Michele Donini
Dylan Slack
Cédric Archambeau
Sanjiv Ranjan Das
K. Kenthapadi
AAML
11
21
0
08 Jun 2021
A Holistic Approach to Interpretability in Financial Lending: Models, Visualizations, and Summary-Explanations
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
19
41
0
04 Jun 2021
On Efficiently Explaining Graph-Based Classifiers
Xuanxiang Huang
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
34
37
0
02 Jun 2021
Probabilistic Sufficient Explanations
Eric Wang
Pasha Khosravi
Mathias Niepert
XAI
FAtt
TPM
30
23
0
21 May 2021
Evaluating the Correctness of Explainable AI Algorithms for Classification
Orcun Yalcin
Xiuyi Fan
Siyuan Liu
XAI
FAtt
16
15
0
20 May 2021
Information-theoretic Evolution of Model Agnostic Global Explanations
Sukriti Verma
Nikaash Puri
Piyush B. Gupta
Balaji Krishnamurthy
FAtt
29
0
0
14 May 2021
SAT-Based Rigorous Explanations for Decision Lists
Alexey Ignatiev
Sasha Rubin
XAI
25
44
0
14 May 2021
Leveraging Sparse Linear Layers for Debuggable Deep Networks
Eric Wong
Shibani Santurkar
A. Madry
FAtt
22
88
0
11 May 2021
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Darius Afchar
Romain Hennequin
Vincent Guigue
FAtt
31
20
0
26 Apr 2021
Shapley Explanation Networks
Rui Wang
Xiaoqian Wang
David I. Inouye
TDI
FAtt
24
44
0
06 Apr 2021
Local Interpretations for Explainable Natural Language Processing: A Survey
Siwen Luo
Hamish Ivison
S. Han
Josiah Poon
MILM
33
48
0
20 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
37
296
0
03 Mar 2021
Connecting Interpretability and Robustness in Decision Trees through Separation
Michal Moshkovitz
Yao-Yuan Yang
Kamalika Chaudhuri
33
22
0
14 Feb 2021
What does LIME really see in images?
Damien Garreau
Dina Mardaoui
FAtt
19
38
0
11 Feb 2021
GeCo: Quality Counterfactual Explanations in Real Time
Maximilian Schleich
Zixuan Geng
Yihong Zhang
D. Suciu
46
61
0
05 Jan 2021
Unbox the Blackbox: Predict and Interpret YouTube Viewership Using Deep Learning
Jiaheng Xie
Xinyu Liu
HAI
31
10
0
21 Dec 2020
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
21
63
0
18 Dec 2020
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
36
241
0
21 Nov 2020
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
R. Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
FAtt
CML
27
99
0
10 Nov 2020
Incorporating Interpretable Output Constraints in Bayesian Neural Networks
Wanqian Yang
Lars Lorch
Moritz Graule
Himabindu Lakkaraju
Finale Doshi-Velez
UQCV
BDL
17
16
0
21 Oct 2020
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
30
51
0
03 Sep 2020
Closed-Form Expressions for Global and Local Interpretation of Tsetlin Machines with Applications to Explaining High-Dimensional Data
Christopher D. Blakely
Ole-Christoffer Granmo
30
16
0
27 Jul 2020
Improving LIME Robustness with Smarter Locality Sampling
Sean Saito
Eugene Chua
Nicholas Capel
Rocco Hu
FAtt
AAML
9
22
0
22 Jun 2020
Model Explanations with Differential Privacy
Neel Patel
Reza Shokri
Yair Zick
SILM
FedML
28
32
0
16 Jun 2020
How Interpretable and Trustworthy are GAMs?
C. Chang
S. Tan
Benjamin J. Lengerich
Anna Goldenberg
R. Caruana
FAtt
14
77
0
11 Jun 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
26
8
0
23 Apr 2020
Model Agnostic Multilevel Explanations
K. Ramamurthy
B. Vinzamuri
Yunfeng Zhang
Amit Dhurandhar
23
41
0
12 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
30
143
0
10 Feb 2020
Deceptive AI Explanations: Creation and Detection
Johannes Schneider
Christian Meske
Michalis Vlachos
14
28
0
21 Jan 2020
When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt
Maximilian Granz
Tim Landgraf
BDL
FAtt
XAI
13
132
0
20 Dec 2019
Unrestricted Permutation forces Extrapolation: Variable Importance Requires at least One More Model, or There Is No Free Variable Importance
Giles Hooker
L. Mentch
Siyu Zhou
37
153
0
01 May 2019
Previous
1
2
3