Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.02140
Cited By
Fully Parameterized Quantile Function for Distributional Reinforcement Learning
5 November 2019
Derek Yang
Li Zhao
Zichuan Lin
Tao Qin
Jiang Bian
Tie-Yan Liu
OOD
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fully Parameterized Quantile Function for Distributional Reinforcement Learning"
22 / 22 papers shown
Title
Flow Models for Unbounded and Geometry-Aware Distributional Reinforcement Learning
Simo Alami C.
Rim Kaddah
Jesse Read
Marie-Paule Cani
51
0
0
07 May 2025
IGN : Implicit Generative Networks
Haozheng Luo
Tianyi Wu
Feiyu Han
Zhijun Yan
OffRL
29
1
0
24 Feb 2025
On Generalization and Distributional Update for Mimicking Observations with Adequate Exploration
Yirui Zhou
Xiaowei Liu
Xiaofeng Zhang
Yangchun Zhang
37
0
0
22 Jan 2025
Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional Reinforcement Learning
Mehrdad Moghimi
Hyejin Ku
OffRL
43
0
0
03 Jan 2025
Foundations of Multivariate Distributional Reinforcement Learning
Harley Wiltzer
Jesse Farebrother
Arthur Gretton
Mark Rowland
OffRL
43
2
0
31 Aug 2024
Multi-agent Reinforcement Learning: A Comprehensive Survey
Dom Huh
Prasant Mohapatra
AI4CE
36
8
0
15 Dec 2023
Learning Risk-Aware Quadrupedal Locomotion using Distributional Reinforcement Learning
Lukas Schneider
Jonas Frey
Takahiro Miki
Marco Hutter
30
9
0
25 Sep 2023
Cramer Type Distances for Learning Gaussian Mixture Models by Gradient Descent
Ruichong Zhang
28
0
0
13 Jul 2023
Diverse Projection Ensembles for Distributional Reinforcement Learning
Moritz A. Zanger
Wendelin Bohmer
M. Spaan
25
4
0
12 Jun 2023
Toward Risk-based Optimistic Exploration for Cooperative Multi-Agent Reinforcement Learning
Ji-Yun Oh
Joonkee Kim
Minchan Jeong
Se-Young Yun
38
1
0
03 Mar 2023
Distributional Method for Risk Averse Reinforcement Learning
Ziteng Cheng
S. Jaimungal
Nick G. Martin
19
0
0
27 Feb 2023
Distributional GFlowNets with Quantile Flows
Dinghuai Zhang
L. Pan
Ricky T. Q. Chen
Aaron Courville
Yoshua Bengio
29
25
0
11 Feb 2023
Quantile Constrained Reinforcement Learning: A Reinforcement Learning Framework Constraining Outage Probability
Whiyoung Jung
Myungsik Cho
Jongeui Park
Young-Jin Sung
35
4
0
28 Nov 2022
Bridging Distributional and Risk-sensitive Reinforcement Learning with Provable Regret Bounds
Hao Liang
Zhihui Luo
23
14
0
25 Oct 2022
Sample-based Uncertainty Quantification with a Single Deterministic Neural Network
T. Kanazawa
Chetan Gupta
UQCV
30
4
0
17 Sep 2022
Reinforcement Learning with Heterogeneous Data: Estimation and Inference
Elynn Y. Chen
Rui Song
Michael I. Jordan
OffRL
21
10
0
31 Jan 2022
Reinforcement Learning for Personalized Drug Discovery and Design for Complex Diseases: A Systems Pharmacology Perspective
Ryan K. Tan
Yang Liu
Lei Xie
37
2
0
21 Jan 2022
Exponential Bellman Equation and Improved Regret Bounds for Risk-Sensitive Reinforcement Learning
Yingjie Fei
Zhuoran Yang
Yudong Chen
Zhaoran Wang
41
46
0
06 Nov 2021
Evolutionary Self-Replication as a Mechanism for Producing Artificial Intelligence
Samuel Schmidgall
Joe Hays
41
1
0
16 Sep 2021
Enabling risk-aware Reinforcement Learning for medical interventions through uncertainty decomposition
Paul Festor
Giulia Luise
Matthieu Komorowski
A. Faisal
UD
OffRL
20
10
0
16 Sep 2021
Conservative Offline Distributional Reinforcement Learning
Yecheng Jason Ma
Dinesh Jayaraman
Osbert Bastani
OffRL
70
78
0
12 Jul 2021
QR-MIX: Distributional Value Function Factorisation for Cooperative Multi-Agent Reinforcement Learning
Jian Hu
Seth Austin Harding
Haibin Wu
Siyue Hu
Shih-Wei Liao
29
9
0
09 Sep 2020
1