ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.11127
  4. Cited By
Reversible designs for extreme memory cost reduction of CNN training

Reversible designs for extreme memory cost reduction of CNN training

24 October 2019
T. Hascoet
Q. Febvre
Y. Ariki
T. Takiguchi
    3DV
ArXiv (abs)PDFHTML

Papers citing "Reversible designs for extreme memory cost reduction of CNN training"

20 / 20 papers shown
Title
An Empirical Model of Large-Batch Training
An Empirical Model of Large-Batch Training
Sam McCandlish
Jared Kaplan
Dario Amodei
OpenAI Dota Team
74
280
0
14 Dec 2018
Measuring the Effects of Data Parallelism on Neural Network Training
Measuring the Effects of Data Parallelism on Neural Network Training
Christopher J. Shallue
Jaehoon Lee
J. Antognini
J. Mamou
J. Ketterling
Yao Wang
100
409
0
08 Nov 2018
Invertible Residual Networks
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCVTPM
159
624
0
02 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
81
167
0
01 Nov 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
305
3,144
0
09 Jul 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
452
5,168
0
19 Jun 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
274
3,488
0
09 Mar 2018
i-RevNet: Deep Invertible Networks
i-RevNet: Deep Invertible Networks
J. Jacobsen
A. Smeulders
Edouard Oyallon
85
333
0
20 Feb 2018
Training and Inference with Integers in Deep Neural Networks
Training and Inference with Integers in Deep Neural Networks
Shuang Wu
Guoqi Li
F. Chen
Luping Shi
MQ
69
391
0
13 Feb 2018
Quantization and Training of Neural Networks for Efficient
  Integer-Arithmetic-Only Inference
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
Benoit Jacob
S. Kligys
Bo Chen
Menglong Zhu
Matthew Tang
Andrew G. Howard
Hartwig Adam
Dmitry Kalenichenko
MQ
167
3,143
0
15 Dec 2017
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
Samuel Rota Buló
Lorenzo Porzi
Peter Kontschieder
77
357
0
07 Dec 2017
Mixed Precision Training
Mixed Precision Training
Paulius Micikevicius
Sharan Narang
Jonah Alben
G. Diamos
Erich Elsen
...
Boris Ginsburg
Michael Houston
Oleksii Kuchaiev
Ganesh Venkatesh
Hao Wu
178
1,805
0
10 Oct 2017
The Reversible Residual Network: Backpropagation Without Storing
  Activations
The Reversible Residual Network: Backpropagation Without Storing Activations
Aidan Gomez
Mengye Ren
R. Urtasun
Roger C. Grosse
79
551
0
14 Jul 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.2K
20,900
0
17 Apr 2017
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,722
0
26 May 2016
Training Deep Nets with Sublinear Memory Cost
Training Deep Nets with Sublinear Memory Cost
Tianqi Chen
Bing Xu
Chiyuan Zhang
Carlos Guestrin
108
1,174
0
21 Apr 2016
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
163
7,501
0
24 Feb 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
322
4,197
0
21 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
131
2,269
0
30 Oct 2014
1