ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.05266
  4. Cited By
Backpropagation Algorithms and Reservoir Computing in Recurrent Neural
  Networks for the Forecasting of Complex Spatiotemporal Dynamics
v1v2 (latest)

Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal Dynamics

9 October 2019
Pantelis R. Vlachas
Jaideep Pathak
Brian R. Hunt
T. Sapsis
M. Girvan
Edward Ott
Petros Koumoutsakos
    AI4TS
ArXiv (abs)PDFHTML

Papers citing "Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal Dynamics"

29 / 29 papers shown
Title
Reservoir Network with Structural Plasticity for Human Activity Recognition
Abdullah M. Zyarah
Alaa M. Abdul-Hadi
Dhireesha Kudithipudi
164
3
0
01 Mar 2025
State-space models are accurate and efficient neural operators for dynamical systems
State-space models are accurate and efficient neural operators for dynamical systems
Zheyuan Hu
Nazanin Ahmadi Daryakenari
Qianli Shen
Kenji Kawaguchi
George Karniadakis
MambaAI4CE
219
17
0
28 Jan 2025
Zero-shot forecasting of chaotic systems
Zero-shot forecasting of chaotic systems
Yuanzhao Zhang
William Gilpin
AI4TS
249
8
0
24 Sep 2024
Machine Learning for Predicting Chaotic Systems
Machine Learning for Predicting Chaotic Systems
Christof Schötz
Alistair J R White
Maximilian Gelbrecht
Niklas Boers
AI4CE
80
4
0
29 Jul 2024
Model-free prediction of spatiotemporal dynamical systems with recurrent
  neural networks: Role of network spectral radius
Model-free prediction of spatiotemporal dynamical systems with recurrent neural networks: Role of network spectral radius
Junjie Jiang
Y. Lai
65
105
0
10 Oct 2019
Machine Learning for Fluid Mechanics
Machine Learning for Fluid Mechanics
Steven Brunton
B. R. Noack
Petros Koumoutsakos
AI4CEPINN
91
2,131
0
27 May 2019
Reconciling modern machine learning practice and the bias-variance
  trade-off
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
254
1,660
0
28 Dec 2018
Exascale Deep Learning for Climate Analytics
Exascale Deep Learning for Climate Analytics
Thorsten Kurth
Sean Treichler
Josh Romero
M. Mudigonda
Nathan Luehr
...
Michael A. Matheson
J. Deslippe
M. Fatica
P. Prabhat
Michael Houston
BDL
87
264
0
03 Oct 2018
Reservoir Computing Universality With Stochastic Inputs
Reservoir Computing Universality With Stochastic Inputs
Lukas Gonon
Juan-Pablo Ortega
69
111
0
07 Jul 2018
Echo state networks are universal
Echo state networks are universal
Lyudmila Grigoryeva
Juan-Pablo Ortega
86
232
0
03 Jun 2018
The Limits and Potentials of Deep Learning for Robotics
The Limits and Potentials of Deep Learning for Robotics
Niko Sünderhauf
Oliver Brock
Walter J. Scheirer
R. Hadsell
Dieter Fox
...
B. Upcroft
Pieter Abbeel
Wolfram Burgard
Michael Milford
Peter Corke
87
530
0
18 Apr 2018
World Models
World Models
David R Ha
Jürgen Schmidhuber
SyDa
166
1,102
0
27 Mar 2018
Hybrid Forecasting of Chaotic Processes: Using Machine Learning in
  Conjunction with a Knowledge-Based Model
Hybrid Forecasting of Chaotic Processes: Using Machine Learning in Conjunction with a Knowledge-Based Model
Jaideep Pathak
Alexander Wikner
Rebeckah K. Fussell
Sarthak Chandra
Brian Hunt
M. Girvan
Edward Ott
61
290
0
09 Mar 2018
Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long
  Short-Term Memory Networks
Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks
Pantelis R. Vlachas
Wonmin Byeon
Z. Y. Wan
T. Sapsis
Petros Koumoutsakos
AI4TS
97
475
0
21 Feb 2018
Brain-inspired photonic signal processor for periodic pattern generation
  and chaotic system emulation
Brain-inspired photonic signal processor for periodic pattern generation and chaotic system emulation
P. Antonik
M. Haelterman
Serge Massar
76
42
0
06 Feb 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
83
1,261
0
27 Dec 2017
Tunable Efficient Unitary Neural Networks (EUNN) and their application
  to RNNs
Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs
Li Jing
Yichen Shen
T. Dubček
J. Peurifoy
S. Skirlo
Yann LeCun
Max Tegmark
Marin Soljacic
95
178
0
15 Dec 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRLODL
225
5,089
0
05 Jun 2016
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations
David M. Krueger
Tegan Maharaj
János Kramár
Mohammad Pezeshki
Nicolas Ballas
Nan Rosemary Ke
Anirudh Goyal
Yoshua Bengio
Aaron Courville
C. Pal
92
318
0
03 Jun 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
435
18,361
0
27 May 2016
A Theoretically Grounded Application of Dropout in Recurrent Neural
  Networks
A Theoretically Grounded Application of Dropout in Recurrent Neural Networks
Y. Gal
Zoubin Ghahramani
UQCVDRLBDL
198
1,651
0
16 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
Unitary Evolution Recurrent Neural Networks
Unitary Evolution Recurrent Neural Networks
Martín Arjovsky
Amar Shah
Yoshua Bengio
ODL
86
771
0
20 Nov 2015
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
572
8,017
0
13 Jun 2015
LSTM: A Search Space Odyssey
LSTM: A Search Space Odyssey
Klaus Greff
R. Srivastava
Jan Koutník
Bas R. Steunebrink
Jürgen Schmidhuber
AI4TSVLM
140
5,320
0
13 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.2K
150,433
0
22 Dec 2014
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
  Modeling
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
Junyoung Chung
Çağlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
610
12,760
0
11 Dec 2014
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.1K
23,414
0
03 Jun 2014
On the difficulty of training Recurrent Neural Networks
On the difficulty of training Recurrent Neural Networks
Razvan Pascanu
Tomas Mikolov
Yoshua Bengio
ODL
224
5,362
0
21 Nov 2012
1