ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.02421
  4. Cited By
On Universal Equivariant Set Networks

On Universal Equivariant Set Networks

6 October 2019
Nimrod Segol
Y. Lipman
    3DPC
ArXivPDFHTML

Papers citing "On Universal Equivariant Set Networks"

42 / 42 papers shown
Title
Permutation Equivariant Neural Networks for Symmetric Tensors
Edward Pearce-Crump
53
1
0
14 Mar 2025
Using Random Noise Equivariantly to Boost Graph Neural Networks Universally
Using Random Noise Equivariantly to Boost Graph Neural Networks Universally
Xuben Wang
Muhan Zhang
107
0
0
04 Feb 2025
Equivariant Graph Network Approximations of High-Degree Polynomials for
  Force Field Prediction
Equivariant Graph Network Approximations of High-Degree Polynomials for Force Field Prediction
Zhao Xu
Haiyang Yu
Montgomery Bohde
Shuiwang Ji
47
0
0
06 Nov 2024
Decomposition of Equivariant Maps via Invariant Maps: Application to
  Universal Approximation under Symmetry
Decomposition of Equivariant Maps via Invariant Maps: Application to Universal Approximation under Symmetry
Akiyoshi Sannai
Yuuki Takai
Matthieu Cordonnier
207
0
0
25 Sep 2024
Co-Representation Neural Hypergraph Diffusion for Edge-Dependent Node
  Classification
Co-Representation Neural Hypergraph Diffusion for Edge-Dependent Node Classification
Yijia Zheng
M. Worring
DiffM
48
1
0
23 May 2024
Understanding Virtual Nodes: Oversquashing and Node Heterogeneity
Understanding Virtual Nodes: Oversquashing and Node Heterogeneity
Joshua Southern
Francesco Di Giovanni
Michael M. Bronstein
J. Lutzeyer
57
1
0
22 May 2024
Graph as Point Set
Graph as Point Set
Xiyuan Wang
Pan Li
Muhan Zhang
GNN
3DPC
PINN
44
4
0
05 May 2024
CKGConv: General Graph Convolution with Continuous Kernels
CKGConv: General Graph Convolution with Continuous Kernels
Liheng Ma
Soumyasundar Pal
Yitian Zhang
Jiaming Zhou
Yingxue Zhang
Mark J. Coates
37
3
0
21 Apr 2024
PolyOculus: Simultaneous Multi-view Image-based Novel View Synthesis
PolyOculus: Simultaneous Multi-view Image-based Novel View Synthesis
Jason J. Yu
Tristan Aumentado-Armstrong
Fereshteh Forghani
Konstantinos G. Derpanis
Marcus A. Brubaker
41
5
0
28 Feb 2024
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Derek Lim
Joshua Robinson
Stefanie Jegelka
Haggai Maron
73
16
0
04 Dec 2023
Learning Symmetrization for Equivariance with Orbit Distance
  Minimization
Learning Symmetrization for Equivariance with Orbit Distance Minimization
Tien Dat Nguyen
Jinwoo Kim
Hongseok Yang
Seunghoon Hong
32
3
0
13 Nov 2023
Learning multi-modal generative models with permutation-invariant
  encoders and tighter variational bounds
Learning multi-modal generative models with permutation-invariant encoders and tighter variational bounds
Marcel Hirt
Domenico Campolo
Victoria Leong
Juan-Pablo Ortega
DRL
10
0
0
01 Sep 2023
Neural approximation of Wasserstein distance via a universal
  architecture for symmetric and factorwise group invariant functions
Neural approximation of Wasserstein distance via a universal architecture for symmetric and factorwise group invariant functions
Samantha Chen
Yusu Wang
20
3
0
01 Aug 2023
Polynomial Width is Sufficient for Set Representation with
  High-dimensional Features
Polynomial Width is Sufficient for Set Representation with High-dimensional Features
Peihao Wang
Shenghao Yang
Shu Li
Zhangyang Wang
Pan Li
27
3
0
08 Jul 2023
Neural Injective Functions for Multisets, Measures and Graphs via a
  Finite Witness Theorem
Neural Injective Functions for Multisets, Measures and Graphs via a Finite Witness Theorem
Tal Amir
S. Gortler
Ilai Avni
Ravi Ravina
Nadav Dym
102
24
0
10 Jun 2023
Equivariant Polynomials for Graph Neural Networks
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
28
31
0
22 Feb 2023
On the Connection Between MPNN and Graph Transformer
On the Connection Between MPNN and Graph Transformer
Chen Cai
Truong-Son Hy
Rose Yu
Yusu Wang
41
51
0
27 Jan 2023
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network
  Formalism
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
29
2
0
14 Nov 2022
Equivariance with Learned Canonicalization Functions
Equivariance with Learned Canonicalization Functions
Sekouba Kaba
Arnab Kumar Mondal
Yan Zhang
Yoshua Bengio
Siamak Ravanbakhsh
44
62
0
11 Nov 2022
Graph Neural Network with Local Frame for Molecular Potential Energy
  Surface
Graph Neural Network with Local Frame for Molecular Potential Energy Surface
Xiyuan Wang
Muhan Zhang
38
9
0
01 Aug 2022
Effective and Interpretable Information Aggregation with Capacity
  Networks
Effective and Interpretable Information Aggregation with Capacity Networks
Markus Zopf
27
0
0
25 Jul 2022
Equivariant Hypergraph Diffusion Neural Operators
Equivariant Hypergraph Diffusion Neural Operators
Peihao Wang
Shenghao Yang
Yunyu Liu
Zhangyang Wang
Pan Li
DiffM
30
33
0
14 Jul 2022
E2PN: Efficient SE(3)-Equivariant Point Network
E2PN: Efficient SE(3)-Equivariant Point Network
Minghan Zhu
Maani Ghaffari
W. A. Clark
Huei Peng
3DPC
27
18
0
11 Jun 2022
Exponential Separations in Symmetric Neural Networks
Exponential Separations in Symmetric Neural Networks
Aaron Zweig
Joan Bruna
32
7
0
02 Jun 2022
Low Dimensional Invariant Embeddings for Universal Geometric Learning
Low Dimensional Invariant Embeddings for Universal Geometric Learning
Nadav Dym
S. Gortler
29
39
0
05 May 2022
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits
  of One-shot Graph Generators
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Karolis Martinkus
Andreas Loukas
Nathanael Perraudin
Roger Wattenhofer
42
67
0
04 Apr 2022
Sign and Basis Invariant Networks for Spectral Graph Representation
  Learning
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
49
141
0
25 Feb 2022
Weisfeiler and Leman go Machine Learning: The Story so far
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Alexander Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten M. Borgwardt
GNN
43
112
0
18 Dec 2021
Equivariant and Invariant Reynolds Networks
Equivariant and Invariant Reynolds Networks
Akiyoshi Sannai
M. Kawano
Wataru Kumagai
51
5
0
15 Oct 2021
Capacity of Group-invariant Linear Readouts from Equivariant
  Representations: How Many Objects can be Linearly Classified Under All
  Possible Views?
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
M. Farrell
Blake Bordelon
Shubhendu Trivedi
Cengiz Pehlevan
18
5
0
14 Oct 2021
Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
  Representation Learning
Pointspectrum: Equivariance Meets Laplacian Filtering for Graph Representation Learning
Marinos Poiitis
Pavlos Sermpezis
Athena Vakali
31
0
0
06 Sep 2021
Universal Approximation of Functions on Sets
Universal Approximation of Functions on Sets
E. Wagstaff
F. Fuchs
Martin Engelcke
Michael A. Osborne
Ingmar Posner
PINN
38
54
0
05 Jul 2021
On the Universality of Rotation Equivariant Point Cloud Networks
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
38
79
0
06 Oct 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
28
111
0
28 Jun 2020
Building powerful and equivariant graph neural networks with structural
  message-passing
Building powerful and equivariant graph neural networks with structural message-passing
Clément Vignac
Andreas Loukas
P. Frossard
31
119
0
26 Jun 2020
Distribution-Based Invariant Deep Networks for Learning Meta-Features
Distribution-Based Invariant Deep Networks for Learning Meta-Features
Gwendoline de Bie
Herilalaina Rakotoarison
Gabriel Peyré
Michèle Sebag
OOD
23
1
0
24 Jun 2020
Normalized Attention Without Probability Cage
Normalized Attention Without Probability Cage
Oliver Richter
Roger Wattenhofer
14
21
0
19 May 2020
Set2Graph: Learning Graphs From Sets
Set2Graph: Learning Graphs From Sets
Hadar Serviansky
Nimrod Segol
Jonathan Shlomi
Kyle Cranmer
Eilam Gross
Haggai Maron
Y. Lipman
PINN
GNN
16
35
0
20 Feb 2020
On Learning Sets of Symmetric Elements
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
30
132
0
20 Feb 2020
Universal Equivariant Multilayer Perceptrons
Universal Equivariant Multilayer Perceptrons
Siamak Ravanbakhsh
100
48
0
07 Feb 2020
Improved Generalization Bounds of Group Invariant / Equivariant Deep
  Networks via Quotient Feature Spaces
Improved Generalization Bounds of Group Invariant / Equivariant Deep Networks via Quotient Feature Spaces
Akiyoshi Sannai
Masaaki Imaizumi
M. Kawano
MLT
28
29
0
15 Oct 2019
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
1