Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.01500
Cited By
MLPerf Training Benchmark
2 October 2019
Arya D. McCarthy
Christine Cheng
Cody Coleman
Greg Diamos
Paulius Micikevicius
David Patterson
Hanlin Tang
Winston Wu
Peter Bailis
Victor Bittorf
David Brooks
Dehao Chen
Debojyoti Dutta
Udit Gupta
K. Hazelwood
Andrew Hock
Aaron Mueller
Atsushi Ike
Bill Jia
Daniel Kang
David Kanter
Naveen Kumar
Jeffery Liao
Guokai Ma
Deepak Narayanan
Tayo Oguntebi
Gennady Pekhimenko
Lillian Pentecost
Vijay Janapa Reddi
Taylor Robie
T. S. John
Tsuguchika Tabaru
Carole-Jean Wu
Lingjie Xu
Masafumi Yamazaki
C. Young
Matei A. Zaharia
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MLPerf Training Benchmark"
28 / 128 papers shown
Title
AIPerf: Automated machine learning as an AI-HPC benchmark
Zhixiang Ren
Yongheng Liu
Tianhui Shi
Lei Xie
Yue Zhou
Jidong Zhai
Youhui Zhang
Yunquan Zhang
Wenguang Chen
27
22
0
17 Aug 2020
Skyline: Interactive In-Editor Computational Performance Profiling for Deep Neural Network Training
Geoffrey X. Yu
Tovi Grossman
Gennady Pekhimenko
24
17
0
15 Aug 2020
Multi-node Bert-pretraining: Cost-efficient Approach
Jiahuang Lin
Xuelong Li
Gennady Pekhimenko
17
13
0
01 Aug 2020
Jointly Optimizing Preprocessing and Inference for DNN-based Visual Analytics
Daniel Kang
A. Mathur
Teja Veeramacheneni
Peter Bailis
Matei A. Zaharia
16
42
0
25 Jul 2020
Distributed Training of Deep Learning Models: A Taxonomic Perspective
M. Langer
Zhen He
W. Rahayu
Yanbo Xue
30
76
0
08 Jul 2020
The OARF Benchmark Suite: Characterization and Implications for Federated Learning Systems
Sixu Hu
Yuan N. Li
Xu Liu
Yue Liu
Zhaomin Wu
Bingsheng He
FedML
18
53
0
14 Jun 2020
Hindsight Logging for Model Training
Rolando Garcia
Eric Liu
Vikram Sreekanti
Bobby Yan
Anusha Dandamudi
Joseph E. Gonzalez
J. M. Hellerstein
Koushik Sen
VLM
27
10
0
12 Jun 2020
Machine Learning Systems for Intelligent Services in the IoT: A Survey
Wiebke Toussaint
Aaron Yi Ding
LRM
30
0
0
29 May 2020
Neural Collaborative Filtering vs. Matrix Factorization Revisited
Steffen Rendle
Walid Krichene
Li Zhang
John R. Anderson
8
415
0
19 May 2020
Optimizing Deep Learning Recommender Systems' Training On CPU Cluster Architectures
Dhiraj D. Kalamkar
E. Georganas
Sudarshan Srinivasan
Jianping Chen
Mikhail Shiryaev
A. Heinecke
56
48
0
10 May 2020
AIBench Scenario: Scenario-distilling AI Benchmarking
Wanling Gao
Fei Tang
Jianfeng Zhan
Xu Wen
Lei Wang
Zheng Cao
Chuanxin Lan
Chunjie Luo
Xiaoli Liu
Zihan Jiang
29
14
0
06 May 2020
AIBench Training: Balanced Industry-Standard AI Training Benchmarking
Fei Tang
Wanling Gao
Jianfeng Zhan
Chuanxin Lan
Xu Wen
...
Yatao Li
Junchao Shao
Zhenyu Wang
Xiaoyu Wang
Hainan Ye
30
3
0
30 Apr 2020
GEVO: GPU Code Optimization using Evolutionary Computation
Jhe-Yu Liou
Xiaodong Wang
Stephanie Forrest
Carole-Jean Wu
30
2
0
17 Apr 2020
Developing a Recommendation Benchmark for MLPerf Training and Inference
Carole-Jean Wu
Robin Burke
Ed H. Chi
Joseph Konstan
Julian McAuley
Yves Raimond
Hao Zhang
VLM
16
29
0
16 Mar 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
235
383
0
05 Mar 2020
DLSpec: A Deep Learning Task Exchange Specification
Abdul Dakkak
Cheng-rong Li
Jinjun Xiong
Wen-mei W. Hwu
16
2
0
26 Feb 2020
AIBench: An Agile Domain-specific Benchmarking Methodology and an AI Benchmark Suite
Wanling Gao
Fei Tang
Jianfeng Zhan
Chuanxin Lan
Chunjie Luo
...
Gang Lu
Junchao Shao
Zhenyu Wang
Xiaoyu Wang
Hainan Ye
27
1
0
17 Feb 2020
HULK: An Energy Efficiency Benchmark Platform for Responsible Natural Language Processing
Xiyou Zhou
Zhiyu Zoey Chen
Xiaoyong Jin
Wei Wang
22
32
0
14 Feb 2020
Chameleon: Adaptive Code Optimization for Expedited Deep Neural Network Compilation
Byung Hoon Ahn
Prannoy Pilligundla
Amir Yazdanbakhsh
H. Esmaeilzadeh
ODL
61
80
0
23 Jan 2020
DeepRecSys: A System for Optimizing End-To-End At-scale Neural Recommendation Inference
Udit Gupta
Samuel Hsia
V. Saraph
Xiaodong Wang
Brandon Reagen
Gu-Yeon Wei
Hsien-Hsin S. Lee
David Brooks
Carole-Jean Wu
GNN
36
188
0
08 Jan 2020
RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing
Liu Ke
Udit Gupta
Carole-Jean Wu
B. Cho
Mark Hempstead
...
Dheevatsa Mudigere
Maxim Naumov
Martin D. Schatz
M. Smelyanskiy
Xiaodong Wang
49
216
0
30 Dec 2019
BenchCouncil's View on Benchmarking AI and Other Emerging Workloads
Jianfeng Zhan
Lei Wang
Wanling Gao
Rui Ren
22
11
0
02 Dec 2019
The Pitfall of Evaluating Performance on Emerging AI Accelerators
Zihan Jiang
Jiansong Li
Jiangfeng Zhan
19
2
0
08 Nov 2019
MLPerf Inference Benchmark
Vijayarāghava Reḍḍī
C. Cheng
David Kanter
Pete H Mattson
Guenther Schmuelling
...
Bing Yu
George Y. Yuan
Aaron Zhong
P. Zhang
Yuchen Zhou
31
487
0
06 Nov 2019
The Architectural Implications of Facebook's DNN-based Personalized Recommendation
Udit Gupta
Carole-Jean Wu
Xiaodong Wang
Maxim Naumov
Brandon Reagen
...
Andrey Malevich
Dheevatsa Mudigere
M. Smelyanskiy
Liang Xiong
Xuan Zhang
GNN
44
290
0
06 Jun 2019
Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RNN Training
Bojian Zheng
Abhishek Tiwari
Nandita Vijaykumar
Gennady Pekhimenko
27
44
0
22 May 2018
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Zhehuai Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
718
6,748
0
26 Sep 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
186
1,186
0
30 Nov 2014
Previous
1
2
3