ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.07856
11
53

The OARF Benchmark Suite: Characterization and Implications for Federated Learning Systems

14 June 2020
Sixu Hu
Yuan N. Li
Xu Liu
Q. Li
Zhaomin Wu
Bingsheng He
    FedML
ArXivPDFHTML
Abstract

This paper presents and characterizes an Open Application Repository for Federated Learning (OARF), a benchmark suite for federated machine learning systems. Previously available benchmarks for federated learning have focused mainly on synthetic datasets and use a limited number of applications. OARF mimics more realistic application scenarios with publicly available data sets as different data silos in image, text and structured data. Our characterization shows that the benchmark suite is diverse in data size, distribution, feature distribution and learning task complexity. The extensive evaluations with reference implementations show the future research opportunities for important aspects of federated learning systems. We have developed reference implementations, and evaluated the important aspects of federated learning, including model accuracy, communication cost, throughput and convergence time. Through these evaluations, we discovered some interesting findings such as federated learning can effectively increase end-to-end throughput.

View on arXiv
Comments on this paper