ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.09381
  4. Cited By
Tutorial and Survey on Probabilistic Graphical Model and Variational
  Inference in Deep Reinforcement Learning

Tutorial and Survey on Probabilistic Graphical Model and Variational Inference in Deep Reinforcement Learning

25 August 2019
Xudong Sun
B. Bischl
    BDL
ArXivPDFHTML

Papers citing "Tutorial and Survey on Probabilistic Graphical Model and Variational Inference in Deep Reinforcement Learning"

23 / 23 papers shown
Title
M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling
M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling
Xudong Sun
Nutan Chen
Alexej Gossmann
Yu Xing
Carla Feistner
...
Felix Drost
Daniele Scarcella
Lisa Beer
Carsten Marr
Carsten Marr
64
1
0
20 Mar 2024
Variational Resampling Based Assessment of Deep Neural Networks under
  Distribution Shift
Variational Resampling Based Assessment of Deep Neural Networks under Distribution Shift
Xudong Sun
Alexej Gossmann
Yu Wang
B. Bischl
OOD
53
5
0
07 Jun 2019
Maximum Entropy-Regularized Multi-Goal Reinforcement Learning
Maximum Entropy-Regularized Multi-Goal Reinforcement Learning
Rui Zhao
Xudong Sun
Volker Tresp
50
82
0
21 May 2019
ReinBo: Machine Learning pipeline search and configuration with Bayesian
  Optimization embedded Reinforcement Learning
ReinBo: Machine Learning pipeline search and configuration with Bayesian Optimization embedded Reinforcement Learning
Xudong Sun
Jiali Lin
B. Bischl
AI4CE
BDL
TPM
37
11
0
10 Apr 2019
High Dimensional Restrictive Federated Model Selection with
  multi-objective Bayesian Optimization over shifted distributions
High Dimensional Restrictive Federated Model Selection with multi-objective Bayesian Optimization over shifted distributions
Xudong Sun
Andrea Bommert
Florian Pfisterer
Jörg Rahnenführer
Michel Lang
B. Bischl
FedML
44
12
0
24 Feb 2019
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement
  Learning with Trajectory Embeddings
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings
John D. Co-Reyes
YuXuan Liu
Abhishek Gupta
Benjamin Eysenbach
Pieter Abbeel
Sergey Levine
SSL
BDL
AIFin
55
145
0
07 Jun 2018
Reinforcement Learning and Control as Probabilistic Inference: Tutorial
  and Review
Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review
Sergey Levine
AI4CE
BDL
73
671
0
02 May 2018
Efficient Model-Based Deep Reinforcement Learning with Variational State
  Tabulation
Efficient Model-Based Deep Reinforcement Learning with Variational State Tabulation
Dane S. Corneil
W. Gerstner
Johanni Brea
OffRL
53
62
0
12 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
284
8,313
0
04 Jan 2018
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
444
18,931
0
20 Jul 2017
Hindsight Experience Replay
Hindsight Experience Replay
Marcin Andrychowicz
Dwight Crow
Alex Ray
Jonas Schneider
Rachel Fong
Peter Welinder
Bob McGrew
Joshua Tobin
Pieter Abbeel
Wojciech Zaremba
OffRL
242
2,322
0
05 Jul 2017
Reinforcement Learning with Deep Energy-Based Policies
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
92
1,339
0
27 Feb 2017
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
159
2,529
0
02 Nov 2016
Tutorial on Variational Autoencoders
Tutorial on Variational Autoencoders
Carl Doersch
BDL
DRL
94
1,741
0
19 Jun 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
189
8,833
0
04 Feb 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
238
4,778
0
04 Jan 2016
Prioritized Experience Replay
Prioritized Experience Replay
Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
OffRL
210
3,787
0
18 Nov 2015
Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
156
7,623
0
22 Sep 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
302
13,214
0
09 Sep 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
169
1,886
0
20 May 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
271
6,755
0
19 Feb 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
418
16,944
0
20 Dec 2013
Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic
  Environments
Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic Environments
Yi Sun
Faustino J. Gomez
Jürgen Schmidhuber
99
163
0
29 Mar 2011
1