Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.05164
Cited By
Unconstrained Monotonic Neural Networks
14 August 2019
Antoine Wehenkel
Gilles Louppe
TPM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unconstrained Monotonic Neural Networks"
34 / 34 papers shown
Title
Advancing Constrained Monotonic Neural Networks: Achieving Universal Approximation Beyond Bounded Activations
Davide Sartor
Alberto Sinigaglia
Gian Antonio Susto
37
0
0
05 May 2025
Deep neural networks for choice analysis: Enhancing behavioral regularity with gradient regularization
Siqi Feng
Rui Yao
Stephane Hess
Ricardo A. Daziano
Timothy Brathwaite
Joan Walker
Shenhao Wang
30
1
0
23 Apr 2024
TERM Model: Tensor Ring Mixture Model for Density Estimation
Ruituo Wu
Jiani Liu
Ce Zhu
Anh-Huy Phan
Ivan Oseledets
Yipeng Liu
31
1
0
13 Dec 2023
Incorporating LLM Priors into Tabular Learners
Max Zhu
Sinivsa Stanivuk
Andrija Petrović
Mladen Nikolic
Pietro Lio
10
1
0
20 Nov 2023
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
36
15
0
04 Oct 2023
Risk-Sensitive Policy with Distributional Reinforcement Learning
Thibaut Théate
D. Ernst
OffRL
30
5
0
30 Dec 2022
Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the JKO Scheme
Alexander Vidal
Samy Wu Fung
Luis Tenorio
Stanley Osher
L. Nurbekyan
35
15
0
30 Nov 2022
Learning to Optimize with Stochastic Dominance Constraints
H. Dai
Yuan Xue
Niao He
B. Wang
Na Li
Dale Schuurmans
Bo Dai
22
6
0
14 Nov 2022
Feature Necessity & Relevancy in ML Classifier Explanations
Xuanxiang Huang
Martin C. Cooper
António Morgado
Jordi Planes
Sasha Rubin
FAtt
38
18
0
27 Oct 2022
Whitening Convergence Rate of Coupling-based Normalizing Flows
Felix Dräxler
Christoph Schnörr
Ullrich Kothe
41
7
0
25 Oct 2022
Neural Estimation of Submodular Functions with Applications to Differentiable Subset Selection
A. De
Soumen Chakrabarti
24
4
0
20 Oct 2022
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows
G. Morel
Lucas Drumetz
Simon Benaïchouche
Nicolas Courty
F. Rousseau
OT
32
6
0
22 Sep 2022
CheckINN: Wide Range Neural Network Verification in Imandra (Extended)
Remi Desmartin
Grant Passmore
Ekaterina Komendantskaya
M. Daggitt
26
5
0
21 Jul 2022
AUTM Flow: Atomic Unrestricted Time Machine for Monotonic Normalizing Flows
Difeng Cai
Yuliang Ji
Huan He
Qiang Ye
Yuanzhe Xi
TPM
33
4
0
05 Jun 2022
Invertible Neural Networks for Graph Prediction
Chen Xu
Xiuyuan Cheng
Yao Xie
GNN
31
9
0
02 Jun 2022
Efficient Reinforcement Learning from Demonstration Using Local Ensemble and Reparameterization with Split and Merge of Expert Policies
Yu Wang
Fang Liu
29
0
0
23 May 2022
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal Optimization adjoint with Moving Speed
Shian Du
Yihong Luo
Wei Chen
Jian Xu
Delu Zeng
32
7
0
19 Mar 2022
Learning Temporal Point Processes for Efficient Retrieval of Continuous Time Event Sequences
Vinayak Gupta
Srikanta J. Bedathur
A. De
AI4TS
25
13
0
17 Feb 2022
Vehicle: Interfacing Neural Network Verifiers with Interactive Theorem Provers
M. Daggitt
Wen Kokke
R. Atkey
Luca Arnaboldi
Ekaterina Komendantskaya
26
5
0
10 Feb 2022
Global Optimization Networks
Sen Zhao
Erez Louidor Ilan
Oleksandr Mangylov
Maya R. Gupta
29
5
0
02 Feb 2022
Triangular Flows for Generative Modeling: Statistical Consistency, Smoothness Classes, and Fast Rates
N. J. Irons
M. Scetbon
Soumik Pal
Zaïd Harchaoui
33
17
0
31 Dec 2021
Multi-Asset Spot and Option Market Simulation
Magnus Wiese
Ben Wood
Alexandre Pachoud
R. Korn
Hans Buehler
Phillip Murray
Lianjun Bai
27
21
0
13 Dec 2021
Sparse Flows: Pruning Continuous-depth Models
Lucas Liebenwein
Ramin Hasani
Alexander Amini
Daniela Rus
26
16
0
24 Jun 2021
A deep generative model for probabilistic energy forecasting in power systems: normalizing flows
Jonathan Dumas
Antoine Wehenkel
Bertrand Cornélusse
Antonio Sutera
AI4TS
32
82
0
17 Jun 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
483
0
08 Mar 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
27
49
0
09 Feb 2021
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Advances in the training, pruning and enforcement of shape constraints of Morphological Neural Networks using Tropical Algebra
Nikolaos Dimitriadis
Petros Maragos
19
9
0
15 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
29
27
0
11 Nov 2020
Variational Disentanglement for Rare Event Modeling
Zidi Xiu
Chenyang Tao
M. Gao
Connor Davis
B. Goldstein
Ricardo Henao
CML
DRL
32
6
0
17 Sep 2020
Counterexample-Guided Learning of Monotonic Neural Networks
Aishwarya Sivaraman
G. Farnadi
T. Millstein
Mathias Niepert
24
50
0
16 Jun 2020
Consistent and Flexible Selectivity Estimation for High-Dimensional Data
Yaoshu Wang
Chuan Xiao
Jianbin Qin
Rui Mao
Onizuka Makoto
Wei Wang
Rui Zhang
Yoshiharu Ishikawa
33
14
0
20 May 2020
Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks
Amir M. Rahimi
Amirreza Shaban
Ching-An Cheng
Richard I. Hartley
Byron Boots
UQCV
14
68
0
15 Mar 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
62
1,631
0
05 Dec 2019
1