ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.10621
  4. Cited By
MadMiner: Machine learning-based inference for particle physics

MadMiner: Machine learning-based inference for particle physics

24 July 2019
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
ArXivPDFHTML

Papers citing "MadMiner: Machine learning-based inference for particle physics"

37 / 37 papers shown
Title
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Sanghwan Bae
Jiwoo Hong
Min Young Lee
Hanbyul Kim
Jeongyeon Nam
Donghyun Kwak
OffRL
LRM
65
0
0
04 Apr 2025
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
141
30,021
0
01 Mar 2022
Effective LHC measurements with matrix elements and machine learning
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
43
14
0
04 Jun 2019
Automatic Posterior Transformation for Likelihood-Free Inference
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
176
322
0
17 May 2019
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
52
2,482
0
19 Apr 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
53
20
0
10 Mar 2019
Dynamic Likelihood-free Inference via Ratio Estimation (DIRE)
Dynamic Likelihood-free Inference via Ratio Estimation (DIRE)
Traiko Dinev
Michael U. Gutmann
79
27
0
23 Oct 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
66
861
0
02 Oct 2018
Likelihood-free inference with an improved cross-entropy estimator
Likelihood-free inference with an improved cross-entropy estimator
M. Stoye
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
FedML
UQCV
BDL
90
48
0
02 Aug 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
210
3,110
0
09 Jul 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
232
5,024
0
19 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
104
181
0
30 May 2018
Likelihood-free inference with emulator networks
Likelihood-free inference with emulator networks
Jan-Matthis Lueckmann
Giacomo Bassetto
Theofanis Karaletsos
Jakob H. Macke
99
125
0
23 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
268
360
0
18 May 2018
A Guide to Constraining Effective Field Theories with Machine Learning
A Guide to Constraining Effective Field Theories with Machine Learning
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
173
140
0
30 Apr 2018
Constraining Effective Field Theories with Machine Learning
Constraining Effective Field Theories with Machine Learning
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
AI4CE
43
151
0
30 Apr 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
84
439
0
03 Apr 2018
Flexible statistical inference for mechanistic models of neural dynamics
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
110
241
0
06 Nov 2017
Adversarial Variational Optimization of Non-Differentiable Simulators
Adversarial Variational Optimization of Non-Differentiable Simulators
Gilles Louppe
Joeri Hermans
Kyle Cranmer
GAN
98
66
0
22 Jul 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
135
1,343
0
19 May 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
482
5,748
0
05 Dec 2016
Likelihood-free inference by ratio estimation
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
119
147
0
30 Nov 2016
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
118
415
0
11 Oct 2016
WaveNet: A Generative Model for Raw Audio
WaveNet: A Generative Model for Raw Audio
Aaron van den Oord
Sander Dieleman
Heiga Zen
Karen Simonyan
Oriol Vinyals
Alex Graves
Nal Kalchbrenner
A. Senior
Koray Kavukcuoglu
DiffM
282
7,361
0
12 Sep 2016
Conditional Image Generation with PixelCNN Decoders
Conditional Image Generation with PixelCNN Decoders
Aaron van den Oord
Nal Kalchbrenner
Oriol Vinyals
L. Espeholt
Alex Graves
Koray Kavukcuoglu
VLM
129
2,495
0
16 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
180
3,681
0
26 May 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
104
158
0
20 May 2016
Neural Autoregressive Distribution Estimation
Neural Autoregressive Distribution Estimation
Benigno Uria
Marc-Alexandre Côté
Karol Gregor
Iain Murray
Hugo Larochelle
70
314
0
07 May 2016
Inference Networks for Sequential Monte Carlo in Graphical Models
Inference Networks for Sequential Monte Carlo in Graphical Models
Brooks Paige
Frank Wood
BDL
101
110
0
22 Feb 2016
Parameterized Machine Learning for High-Energy Physics
Parameterized Machine Learning for High-Energy Physics
Pierre Baldi
Kyle Cranmer
Taylor Faucett
Peter Sadowski
D. Whiteson
AI4CE
PINN
45
238
0
28 Jan 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
395
2,563
0
25 Jan 2016
Approximating Likelihood Ratios with Calibrated Discriminative
  Classifiers
Approximating Likelihood Ratios with Calibrated Discriminative Classifiers
Kyle Cranmer
J. Pavez
Gilles Louppe
77
223
0
06 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
252
4,143
0
21 May 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OOD
SyDa
UQCV
109
863
0
12 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
806
149,474
0
22 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
91
2,251
0
30 Oct 2014
Approximate Bayesian Computation via Regression Density Estimation
Approximate Bayesian Computation via Regression Density Estimation
Yanan Fan
David J. Nott
Scott A. Sisson
89
62
0
06 Dec 2012
1