ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.04809
  4. Cited By
Variational Autoencoders and Nonlinear ICA: A Unifying Framework

Variational Autoencoders and Nonlinear ICA: A Unifying Framework

10 July 2019
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
    OOD
ArXivPDFHTML

Papers citing "Variational Autoencoders and Nonlinear ICA: A Unifying Framework"

32 / 132 papers shown
Title
Learning Disentangled Representations in the Imaging Domain
Learning Disentangled Representations in the Imaging Domain
Xiao Liu
Pedro Sanchez
Spyridon Thermos
Alison Q. OÑeil
Sotirios A. Tsaftaris
OOD
DRL
34
71
0
26 Aug 2021
Identifiable Energy-based Representations: An Application to Estimating
  Heterogeneous Causal Effects
Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects
Yao Zhang
Jeroen Berrevoets
M. Schaar
CML
41
6
0
06 Aug 2021
Improving Music Performance Assessment with Contrastive Learning
Improving Music Performance Assessment with Contrastive Learning
Pavan Seshadri
Alexander Lerch
27
8
0
03 Aug 2021
Learning latent causal graphs via mixture oracles
Learning latent causal graphs via mixture oracles
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
CML
38
47
0
29 Jun 2021
Iterative Feature Matching: Toward Provable Domain Generalization with
  Logarithmic Environments
Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments
Yining Chen
Elan Rosenfeld
Mark Sellke
Tengyu Ma
Andrej Risteski
OOD
36
33
0
18 Jun 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
15
253
0
11 Jun 2021
Independent mechanism analysis, a new concept?
Independent mechanism analysis, a new concept?
Luigi Gresele
Julius von Kügelgen
Vincent Stimper
Bernhard Schölkopf
M. Besserve
CML
23
100
0
09 Jun 2021
Causal Hidden Markov Model for Time Series Disease Forecasting
Causal Hidden Markov Model for Time Series Disease Forecasting
Jing Li
Botong Wu
Xinwei Sun
Yizhou Wang
CML
OOD
21
25
0
30 Mar 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable
  Explanations
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
39
55
0
18 Mar 2021
Information Maximization Clustering via Multi-View Self-Labelling
Information Maximization Clustering via Multi-View Self-Labelling
Foivos Ntelemis
Yaochu Jin
S. Thomas
SSL
21
25
0
12 Mar 2021
Towards Building A Group-based Unsupervised Representation
  Disentanglement Framework
Towards Building A Group-based Unsupervised Representation Disentanglement Framework
Tao Yang
Xuanchi Ren
Yuwang Wang
W. Zeng
Nanning Zheng
CoGe
DRL
26
27
0
20 Feb 2021
Contrastive Learning Inverts the Data Generating Process
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
238
211
0
17 Feb 2021
A Deep Learning Approach to Anomaly Sequence Detection for
  High-Resolution Monitoring of Power Systems
A Deep Learning Approach to Anomaly Sequence Detection for High-Resolution Monitoring of Power Systems
Kursat Rasim Mestav
Xinyi Wang
Lang Tong
AI4TS
20
27
0
09 Dec 2020
Causal Autoregressive Flows
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
27
108
0
04 Nov 2020
Latent Causal Invariant Model
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
31
14
0
04 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution
  Prediction
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
35
104
0
03 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
35
80
0
27 Oct 2020
A Sober Look at the Unsupervised Learning of Disentangled
  Representations and their Evaluation
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
17
66
0
27 Oct 2020
Product Manifold Learning
Product Manifold Learning
Sharon Zhang
Amit Moscovich
A. Singer
44
14
0
19 Oct 2020
Multilinear Latent Conditioning for Generating Unseen Attribute
  Combinations
Multilinear Latent Conditioning for Generating Unseen Attribute Combinations
Markos Georgopoulos
Grigorios G. Chrysos
Maja Pantic
Yannis Panagakis
GAN
DRL
24
17
0
09 Sep 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
48
132
0
21 Jul 2020
Time Series Source Separation with Slow Flows
Time Series Source Separation with Slow Flows
Edouard Pineau
S. Razakarivony
Thomas Bonald
BDL
AI4TS
47
2
0
20 Jul 2020
Identifying Latent Stochastic Differential Equations
Identifying Latent Stochastic Differential Equations
Ali Hasan
João M. Pereira
Sina Farsiu
Vahid Tarokh
DiffM
27
18
0
12 Jul 2020
Independent Innovation Analysis for Nonlinear Vector Autoregressive
  Process
Independent Innovation Analysis for Nonlinear Vector Autoregressive Process
H. Morioka
Hermanni Hälvä
Aapo Hyvarinen
25
22
0
19 Jun 2020
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
A Deeper Look at the Unsupervised Learning of Disentangled
  Representations in $β$-VAE from the Perspective of Core Object
  Recognition
A Deeper Look at the Unsupervised Learning of Disentangled Representations in βββ-VAE from the Perspective of Core Object Recognition
Harshvardhan Digvijay Sikka
OCL
OOD
BDL
DRL
27
1
0
25 Apr 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
41
44
0
18 Apr 2020
A theory of independent mechanisms for extrapolation in generative
  models
A theory of independent mechanisms for extrapolation in generative models
M. Besserve
Rémy Sun
Dominik Janzing
Bernhard Schölkopf
28
25
0
01 Apr 2020
Few-shot Domain Adaptation by Causal Mechanism Transfer
Few-shot Domain Adaptation by Causal Mechanism Transfer
Takeshi Teshima
Issei Sato
Masashi Sugiyama
OOD
CML
TTA
33
86
0
10 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
314
0
07 Feb 2020
Measurement Dependence Inducing Latent Causal Models
Measurement Dependence Inducing Latent Causal Models
Alex Markham
Moritz Grosse-Wentrup
CML
23
15
0
19 Oct 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRL
OOD
35
198
0
24 May 2019
Previous
123