ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.04809
  4. Cited By
Variational Autoencoders and Nonlinear ICA: A Unifying Framework

Variational Autoencoders and Nonlinear ICA: A Unifying Framework

10 July 2019
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
    OOD
ArXivPDFHTML

Papers citing "Variational Autoencoders and Nonlinear ICA: A Unifying Framework"

50 / 132 papers shown
Title
Identifiability of latent-variable and structural-equation models: from
  linear to nonlinear
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
53
41
0
06 Feb 2023
Unpaired Multi-Domain Causal Representation Learning
Unpaired Multi-Domain Causal Representation Learning
Nils Sturma
C. Squires
Mathias Drton
Caroline Uhler
OOD
CML
48
20
0
02 Feb 2023
A Survey of Methods, Challenges and Perspectives in Causality
A Survey of Methods, Challenges and Perspectives in Causality
Gaël Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
44
13
0
01 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
57
11
0
29 Jan 2023
eVAE: Evolutionary Variational Autoencoder
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
40
10
0
01 Jan 2023
An Adaptive Kernel Approach to Federated Learning of Heterogeneous
  Causal Effects
An Adaptive Kernel Approach to Federated Learning of Heterogeneous Causal Effects
Thanh Vinh Vo
Arnab Bhattacharyya
Young Lee
Tze-Yun Leong
FedML
33
19
0
01 Jan 2023
ContraFeat: Contrasting Deep Features for Semantic Discovery
ContraFeat: Contrasting Deep Features for Semantic Discovery
Xinqi Zhu
Chang Xu
Dacheng Tao
DRL
31
2
0
14 Dec 2022
Linear Causal Disentanglement via Interventions
Linear Causal Disentanglement via Interventions
C. Squires
A. Seigal
Salil Bhate
Caroline Uhler
CML
29
66
0
29 Nov 2022
Disentangled Representation Learning
Disentangled Representation Learning
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
39
78
0
21 Nov 2022
Representational dissimilarity metric spaces for stochastic neural
  networks
Representational dissimilarity metric spaces for stochastic neural networks
Lyndon Duong
Jingyang Zhou
Josue Nassar
Jules Berman
Jeroen Olieslagers
Alex H. Williams
30
19
0
21 Nov 2022
Confounder Balancing for Instrumental Variable Regression with Latent
  Variable
Confounder Balancing for Instrumental Variable Regression with Latent Variable
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Bo Li
Fei Wu
CML
47
0
0
18 Nov 2022
Mechanistic Mode Connectivity
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
34
45
0
15 Nov 2022
Disentangling Variational Autoencoders
Disentangling Variational Autoencoders
Rafael Pastrana
CoGe
DRL
38
4
0
14 Nov 2022
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OOD
CML
DRL
36
35
0
07 Nov 2022
Temporally Disentangled Representation Learning
Temporally Disentangled Representation Learning
Weiran Yao
Guangyi Chen
Kun Zhang
CML
BDL
OOD
34
49
0
24 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
40
54
0
16 Oct 2022
Provable Subspace Identification Under Post-Nonlinear Mixtures
Provable Subspace Identification Under Post-Nonlinear Mixtures
Qi Lyu
Xiao Fu
CoGe
31
0
0
14 Oct 2022
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Karsten Roth
Mark Ibrahim
Zeynep Akata
Pascal Vincent
Diane Bouchacourt
CML
OOD
CoGe
41
33
0
13 Oct 2022
Time Series Causal Link Estimation under Hidden Confounding using
  Knockoff Interventions
Time Series Causal Link Estimation under Hidden Confounding using Knockoff Interventions
V. T. Trifunov
M. Shadaydeh
Joachim Denzler
CML
BDL
34
3
0
23 Sep 2022
Fair Inference for Discrete Latent Variable Models
Fair Inference for Discrete Latent Variable Models
Rashidul Islam
Shimei Pan
James R. Foulds
FaML
53
1
0
15 Sep 2022
Long-term Causal Effects Estimation via Latent Surrogates Representation
  Learning
Long-term Causal Effects Estimation via Latent Surrogates Representation Learning
Ruichu Cai
Weilin Chen
Zeqin Yang
Shu Wan
Chen Zheng
Xiaoqing Yang
Jiecheng Guo
CML
BDL
40
12
0
09 Aug 2022
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
43
28
0
06 Jul 2022
When are Post-hoc Conceptual Explanations Identifiable?
When are Post-hoc Conceptual Explanations Identifiable?
Tobias Leemann
Michael Kirchhof
Yao Rong
Enkelejda Kasneci
Gjergji Kasneci
57
10
0
28 Jun 2022
Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive
  Learning
Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning
Cheng Tan
Zhangyang Gao
Lirong Wu
Yongjie Xu
Jun Xia
Siyuan Li
Stan Z. Li
51
107
0
24 Jun 2022
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
31
49
0
20 Jun 2022
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
Yujia Zheng
Ignavier Ng
Kun Zhang
CML
26
59
0
15 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
40
19
0
06 Jun 2022
Weakly Supervised Representation Learning with Sparse Perturbations
Weakly Supervised Representation Learning with Sparse Perturbations
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
SSL
35
58
0
02 Jun 2022
Top-down inference in an early visual cortex inspired hierarchical
  Variational Autoencoder
Top-down inference in an early visual cortex inspired hierarchical Variational Autoencoder
F. Csikor
B. Meszéna
Bence Szabó
Gergő Orbán
BDL
DRL
34
5
0
01 Jun 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
111
64
0
31 May 2022
Unsupervised Mismatch Localization in Cross-Modal Sequential Data with
  Application to Mispronunciations Localization
Unsupervised Mismatch Localization in Cross-Modal Sequential Data with Application to Mispronunciations Localization
Wei Wei
Hengguan Huang
Xiangming Gu
Hao Wang
Ye Wang
BDL
32
0
0
05 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
28
48
0
01 May 2022
Weakly supervised causal representation learning
Weakly supervised causal representation learning
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
OOD
CML
41
122
0
30 Mar 2022
Multi-Instance Causal Representation Learning for Instance Label
  Prediction and Out-of-Distribution Generalization
Multi-Instance Causal Representation Learning for Instance Label Prediction and Out-of-Distribution Generalization
Weijia Zhang
Xuanhui Zhang
Hanwen Deng
Min-Ling Zhang
27
22
0
25 Feb 2022
On Pitfalls of Identifiability in Unsupervised Learning. A Note on:
  "Desiderata for Representation Learning: A Causal Perspective"
On Pitfalls of Identifiability in Unsupervised Learning. A Note on: "Desiderata for Representation Learning: A Causal Perspective"
Shubhangi Ghosh
Luigi Gresele
Julius von Kügelgen
M. Besserve
Bernhard Schölkopf
CML
22
0
0
14 Feb 2022
CITRIS: Causal Identifiability from Temporal Intervened Sequences
CITRIS: Causal Identifiability from Temporal Intervened Sequences
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
46
102
0
07 Feb 2022
Right for the Right Latent Factors: Debiasing Generative Models via
  Disentanglement
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement
Xiaoting Shao
Karl Stelzner
Kristian Kersting
CML
DRL
34
3
0
01 Feb 2022
Disentanglement and Generalization Under Correlation Shifts
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
39
7
0
29 Dec 2021
MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via
  Deep-Learning UWB Radar
MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar
Tianyue Zheng
Zhe Chen
Shujie Zhang
Chao Cai
Jun Luo
29
95
0
16 Nov 2021
Unsupervised Learning of Compositional Energy Concepts
Unsupervised Learning of Compositional Energy Concepts
Yilun Du
Shuang Li
Yash Sharma
J. Tenenbaum
Igor Mordatch
CoGe
OCL
32
76
0
04 Nov 2021
Properties from Mechanisms: An Equivariance Perspective on Identifiable
  Representation Learning
Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
34
38
0
29 Oct 2021
Identifiable Generative Models for Missing Not at Random Data Imputation
Identifiable Generative Models for Missing Not at Random Data Imputation
Chao Ma
Cheng Zhang
36
34
0
27 Oct 2021
Contrastively Disentangled Sequential Variational Autoencoder
Contrastively Disentangled Sequential Variational Autoencoder
M. Kiener
Weiran Wang
Michael Gerndt
CoGe
DRL
39
40
0
22 Oct 2021
Identifiable Deep Generative Models via Sparse Decoding
Identifiable Deep Generative Models via Sparse Decoding
Gemma E. Moran
Dhanya Sridhar
Yixin Wang
David M. Blei
BDL
31
45
0
20 Oct 2021
Discovery of Single Independent Latent Variable
Discovery of Single Independent Latent Variable
Uri Shaham
Jonathan Svirsky
Ori Katz
Ronen Talmon
CML
30
2
0
12 Oct 2021
Learning Temporally Causal Latent Processes from General Temporal Data
Learning Temporally Causal Latent Processes from General Temporal Data
Weiran Yao
Yuewen Sun
Alex Ho
Changyin Sun
Kun Zhang
BDL
CML
37
85
0
11 Oct 2021
$β$-Intact-VAE: Identifying and Estimating Causal Effects under
  Limited Overlap
βββ-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
35
14
0
11 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
30
3
0
30 Sep 2021
Be More Active! Understanding the Differences between Mean and Sampled
  Representations of Variational Autoencoders
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
Lisa Bonheme
M. Grzes
DRL
21
6
0
26 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
37
82
0
08 Sep 2021
Previous
123
Next