Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.04809
Cited By
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
10 July 2019
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Autoencoders and Nonlinear ICA: A Unifying Framework"
50 / 132 papers shown
Title
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
53
41
0
06 Feb 2023
Unpaired Multi-Domain Causal Representation Learning
Nils Sturma
C. Squires
Mathias Drton
Caroline Uhler
OOD
CML
48
20
0
02 Feb 2023
A Survey of Methods, Challenges and Perspectives in Causality
Gaël Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
44
13
0
01 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
57
11
0
29 Jan 2023
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
40
10
0
01 Jan 2023
An Adaptive Kernel Approach to Federated Learning of Heterogeneous Causal Effects
Thanh Vinh Vo
Arnab Bhattacharyya
Young Lee
Tze-Yun Leong
FedML
33
19
0
01 Jan 2023
ContraFeat: Contrasting Deep Features for Semantic Discovery
Xinqi Zhu
Chang Xu
Dacheng Tao
DRL
31
2
0
14 Dec 2022
Linear Causal Disentanglement via Interventions
C. Squires
A. Seigal
Salil Bhate
Caroline Uhler
CML
29
66
0
29 Nov 2022
Disentangled Representation Learning
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
39
78
0
21 Nov 2022
Representational dissimilarity metric spaces for stochastic neural networks
Lyndon Duong
Jingyang Zhou
Josue Nassar
Jules Berman
Jeroen Olieslagers
Alex H. Williams
30
19
0
21 Nov 2022
Confounder Balancing for Instrumental Variable Regression with Latent Variable
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Bo Li
Fei Wu
CML
47
0
0
18 Nov 2022
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
34
45
0
15 Nov 2022
Disentangling Variational Autoencoders
Rafael Pastrana
CoGe
DRL
38
4
0
14 Nov 2022
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OOD
CML
DRL
36
35
0
07 Nov 2022
Temporally Disentangled Representation Learning
Weiran Yao
Guangyi Chen
Kun Zhang
CML
BDL
OOD
34
49
0
24 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
40
54
0
16 Oct 2022
Provable Subspace Identification Under Post-Nonlinear Mixtures
Qi Lyu
Xiao Fu
CoGe
31
0
0
14 Oct 2022
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Karsten Roth
Mark Ibrahim
Zeynep Akata
Pascal Vincent
Diane Bouchacourt
CML
OOD
CoGe
41
33
0
13 Oct 2022
Time Series Causal Link Estimation under Hidden Confounding using Knockoff Interventions
V. T. Trifunov
M. Shadaydeh
Joachim Denzler
CML
BDL
34
3
0
23 Sep 2022
Fair Inference for Discrete Latent Variable Models
Rashidul Islam
Shimei Pan
James R. Foulds
FaML
53
1
0
15 Sep 2022
Long-term Causal Effects Estimation via Latent Surrogates Representation Learning
Ruichu Cai
Weilin Chen
Zeqin Yang
Shu Wan
Chen Zheng
Xiaoqing Yang
Jiecheng Guo
CML
BDL
40
12
0
09 Aug 2022
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
43
28
0
06 Jul 2022
When are Post-hoc Conceptual Explanations Identifiable?
Tobias Leemann
Michael Kirchhof
Yao Rong
Enkelejda Kasneci
Gjergji Kasneci
57
10
0
28 Jun 2022
Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning
Cheng Tan
Zhangyang Gao
Lirong Wu
Yongjie Xu
Jun Xia
Siyuan Li
Stan Z. Li
51
107
0
24 Jun 2022
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
31
49
0
20 Jun 2022
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
Yujia Zheng
Ignavier Ng
Kun Zhang
CML
26
59
0
15 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
40
19
0
06 Jun 2022
Weakly Supervised Representation Learning with Sparse Perturbations
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
SSL
35
58
0
02 Jun 2022
Top-down inference in an early visual cortex inspired hierarchical Variational Autoencoder
F. Csikor
B. Meszéna
Bence Szabó
Gergő Orbán
BDL
DRL
34
5
0
01 Jun 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
111
64
0
31 May 2022
Unsupervised Mismatch Localization in Cross-Modal Sequential Data with Application to Mispronunciations Localization
Wei Wei
Hengguan Huang
Xiangming Gu
Hao Wang
Ye Wang
BDL
32
0
0
05 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
28
48
0
01 May 2022
Weakly supervised causal representation learning
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
OOD
CML
41
122
0
30 Mar 2022
Multi-Instance Causal Representation Learning for Instance Label Prediction and Out-of-Distribution Generalization
Weijia Zhang
Xuanhui Zhang
Hanwen Deng
Min-Ling Zhang
27
22
0
25 Feb 2022
On Pitfalls of Identifiability in Unsupervised Learning. A Note on: "Desiderata for Representation Learning: A Causal Perspective"
Shubhangi Ghosh
Luigi Gresele
Julius von Kügelgen
M. Besserve
Bernhard Schölkopf
CML
22
0
0
14 Feb 2022
CITRIS: Causal Identifiability from Temporal Intervened Sequences
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
46
102
0
07 Feb 2022
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement
Xiaoting Shao
Karl Stelzner
Kristian Kersting
CML
DRL
34
3
0
01 Feb 2022
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
39
7
0
29 Dec 2021
MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar
Tianyue Zheng
Zhe Chen
Shujie Zhang
Chao Cai
Jun Luo
29
95
0
16 Nov 2021
Unsupervised Learning of Compositional Energy Concepts
Yilun Du
Shuang Li
Yash Sharma
J. Tenenbaum
Igor Mordatch
CoGe
OCL
32
76
0
04 Nov 2021
Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
34
38
0
29 Oct 2021
Identifiable Generative Models for Missing Not at Random Data Imputation
Chao Ma
Cheng Zhang
36
34
0
27 Oct 2021
Contrastively Disentangled Sequential Variational Autoencoder
M. Kiener
Weiran Wang
Michael Gerndt
CoGe
DRL
39
40
0
22 Oct 2021
Identifiable Deep Generative Models via Sparse Decoding
Gemma E. Moran
Dhanya Sridhar
Yixin Wang
David M. Blei
BDL
31
45
0
20 Oct 2021
Discovery of Single Independent Latent Variable
Uri Shaham
Jonathan Svirsky
Ori Katz
Ronen Talmon
CML
30
2
0
12 Oct 2021
Learning Temporally Causal Latent Processes from General Temporal Data
Weiran Yao
Yuewen Sun
Alex Ho
Changyin Sun
Kun Zhang
BDL
CML
37
85
0
11 Oct 2021
β
β
β
-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
35
14
0
11 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
30
3
0
30 Sep 2021
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
Lisa Bonheme
M. Grzes
DRL
21
6
0
26 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
37
82
0
08 Sep 2021
Previous
1
2
3
Next