Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.02444
Cited By
Diffprivlib: The IBM Differential Privacy Library
4 July 2019
N. Holohan
S. Braghin
Pól Mac Aonghusa
Killian Levacher
SyDa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Diffprivlib: The IBM Differential Privacy Library"
30 / 30 papers shown
Title
The Importance of Being Discrete: Measuring the Impact of Discretization in End-to-End Differentially Private Synthetic Data
Georgi Ganev
Meenatchi Sundaram Muthu Selva Annamalai
Sofiane Mahiou
Emiliano De Cristofaro
24
2
0
09 Apr 2025
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
49
2
0
19 Aug 2024
Lomas: A Platform for Confidential Analysis of Private Data
Damien Aymon
Dan-Thuy Lam
Lancelot Marti
Pauline Maury-Laribiere
Christine Choirat
R. D. Fondeville
PILM
15
2
0
24 Jun 2024
Unified Locational Differential Privacy Framework
Aman Priyanshu
Yash Maurya
Suriya Ganesh
Vy Tran
31
0
0
06 May 2024
FastLloyd: Federated, Accurate, Secure, and Tunable
k
k
k
-Means Clustering with Differential Privacy
Abdulrahman Diaa
Thomas Humphries
Florian Kerschbaum
FedML
38
0
0
03 May 2024
You Can Use But Cannot Recognize: Preserving Visual Privacy in Deep Neural Networks
Qiushi Li
Yan Zhang
Ju Ren
Qi Li
Yaoxue Zhang
AAML
PICV
41
23
0
05 Apr 2024
Programming Frameworks for Differential Privacy
Marco Gaboardi
Michael Hay
Salil P. Vadhan
38
1
0
17 Mar 2024
Privacy-Preserving Collaborative Split Learning Framework for Smart Grid Load Forecasting
Asif Iqbal
P. Gope
Biplab Sikdar
39
2
0
03 Mar 2024
RAIFLE: Reconstruction Attacks on Interaction-based Federated Learning with Adversarial Data Manipulation
Dzung Pham
Shreyas Kulkarni
Amir Houmansadr
33
0
0
29 Oct 2023
DPpack: An R Package for Differentially Private Statistical Analysis and Machine Learning
S. Giddens
F. Liu
38
1
0
19 Sep 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
49
11
0
11 Aug 2023
Random Number Generators and Seeding for Differential Privacy
N. Holohan
SyDa
27
1
0
07 Jul 2023
Arbitrary Decisions are a Hidden Cost of Differentially Private Training
B. Kulynych
Hsiang Hsu
Carmela Troncoso
Flavio du Pin Calmon
28
18
0
28 Feb 2023
A General Framework for Auditing Differentially Private Machine Learning
Fred Lu
Joseph Munoz
Maya Fuchs
Tyler LeBlond
Elliott Zaresky-Williams
Edward Raff
Francis Ferraro
Brian Testa
FedML
22
35
0
16 Oct 2022
dpart: Differentially Private Autoregressive Tabular, a General Framework for Synthetic Data Generation
Sofiane Mahiou
Kai Xu
Georgi Ganev
SyDa
13
11
0
12 Jul 2022
Exploring the Unfairness of DP-SGD Across Settings
Frederik Noe
R. Herskind
Anders Søgaard
27
4
0
24 Feb 2022
Plume: Differential Privacy at Scale
Kareem Amin
Jennifer Gillenwater
Matthew Joseph
Alex Kulesza
Sergei Vassilvitskii
34
9
0
27 Jan 2022
Differential Privacy Made Easy
Muhammad Aitsam
SyDa
37
8
0
01 Jan 2022
DP-XGBoost: Private Machine Learning at Scale
Cheng Cheng
Wei Dai
22
8
0
25 Oct 2021
Robin Hood and Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data
Georgi Ganev
Bristena Oprisanu
Emiliano De Cristofaro
37
57
0
23 Sep 2021
An automatic differentiation system for the age of differential privacy
Dmitrii Usynin
Alexander Ziller
Moritz Knolle
Andrew Trask
Kritika Prakash
Daniel Rueckert
Georgios Kaissis
35
3
0
22 Sep 2021
Secure Random Sampling in Differential Privacy
N. Holohan
S. Braghin
18
16
0
21 Jul 2021
Accuracy, Interpretability, and Differential Privacy via Explainable Boosting
Harsha Nori
R. Caruana
Zhiqi Bu
J. Shen
Janardhan Kulkarni
33
37
0
17 Jun 2021
DDUO: General-Purpose Dynamic Analysis for Differential Privacy
Chiké Abuah
Alex Silence
David Darais
Joseph P. Near
51
12
0
16 Mar 2021
Privacy-Preserving Directly-Follows Graphs: Balancing Risk and Utility in Process Mining
Gamal Elkoumy
A. Pankova
Marlon Dumas
30
6
0
02 Dec 2020
Private Reinforcement Learning with PAC and Regret Guarantees
G. Vietri
Borja Balle
A. Krishnamurthy
Zhiwei Steven Wu
23
59
0
18 Sep 2020
Anonymizing Machine Learning Models
Abigail Goldsteen
Gilad Ezov
Ron Shmelkin
Micha Moffie
Ariel Farkash
MIACV
16
5
0
26 Jul 2020
Reducing Risk of Model Inversion Using Privacy-Guided Training
Abigail Goldsteen
Gilad Ezov
Ariel Farkash
27
4
0
29 Jun 2020
Disparate Vulnerability to Membership Inference Attacks
B. Kulynych
Mohammad Yaghini
Giovanni Cherubin
Michael Veale
Carmela Troncoso
13
39
0
02 Jun 2019
Optimal Differentially Private Mechanisms for Randomised Response
N. Holohan
D. Leith
O. Mason
32
62
0
16 Dec 2016
1