ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.12058
17
4

Exploring the Unfairness of DP-SGD Across Settings

24 February 2022
Frederik Noe
R. Herskind
Anders Søgaard
ArXivPDFHTML
Abstract

End users and regulators require private and fair artificial intelligence models, but previous work suggests these objectives may be at odds. We use the CivilComments to evaluate the impact of applying the {\em de facto} standard approach to privacy, DP-SGD, across several fairness metrics. We evaluate three implementations of DP-SGD: for dimensionality reduction (PCA), linear classification (logistic regression), and robust deep learning (Group-DRO). We establish a negative, logarithmic correlation between privacy and fairness in the case of linear classification and robust deep learning. DP-SGD had no significant impact on fairness for PCA, but upon inspection, also did not seem to lead to private representations.

View on arXiv
Comments on this paper