ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.10115
  4. Cited By
Divide and Couple: Using Monte Carlo Variational Objectives for
  Posterior Approximation

Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation

24 June 2019
Justin Domke
Daniel Sheldon
ArXivPDFHTML

Papers citing "Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation"

6 / 6 papers shown
Title
Towards Model-Agnostic Posterior Approximation for Fast and Accurate
  Variational Autoencoders
Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
DRL
29
0
0
13 Mar 2024
eVAE: Evolutionary Variational Autoencoder
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
33
10
0
01 Jan 2023
Variational Inference with Locally Enhanced Bounds for Hierarchical
  Models
Variational Inference with Locally Enhanced Bounds for Hierarchical Models
Tomas Geffner
Justin Domke
29
5
0
08 Mar 2022
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
33
34
0
08 Jul 2021
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and
  Optimization
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
8
38
0
18 Jun 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
123
54
0
23 Mar 2020
1